当前期刊: Endocrine Reviews Go to current issue    加入关注   
显示样式:        排序: 导出
我的关注
我的收藏
您暂时未登录!
登录
  • ERRATUM FOR “Delayed Puberty—Phenotypic Diversity, Molecular Genetic Mechanisms, and Recent Discoveries”
    Endocr. Rev. (IF 15.167) Pub Date : 2020-01-11

    In the above-named article by Howard SR and Dunkel L (Endocr Rev. 2019;40(5):1285–1317; doi: 10.1210/er.2018-00248), the following error occurred during the production process of the accepted manuscript: In Table 1 “Klinefelter syndrome” under the heading “HH” should read “Kallmann syndrome.” The corrected table is shown here.

    更新日期:2020-01-14
  • Glucose-Dependent Insulinotropic Polypeptide Receptor Therapies for the Treatment of Obesity, Do Agonists = Antagonists?
    Endocr. Rev. (IF 15.167) Pub Date : 2019-09-12
    Killion E, Lu S, Fort M, et al.

    Glucose-dependent insulinotropic polypeptide receptor (GIPR) is associated with obesity in human genome-wide association studies. Similarly, mouse genetic studies indicate that loss of function alleles and glucose-dependent insulinotropic polypeptide overexpression both protect from high-fat diet–induced weight gain. Together, these data provide compelling evidence to develop therapies targeting GIPR for the treatment of obesity. Further, both antagonists and agonists alone prevent weight gain, but result in remarkable weight loss when codosed or molecularly combined with glucagon-like peptide-1 analogs preclinically. Here, we review the current literature on GIPR, including biology, human and mouse genetics, and pharmacology of both agonists and antagonists, discussing the similarities and differences between the 2 approaches. Despite opposite approaches being investigated preclinically and clinically, there may be viability of both agonists and antagonists for the treatment of obesity, and we expect this area to continue to evolve with new clinical data and molecular and pharmacological analyses of GIPR function.

    更新日期:2020-01-10
  • Metabolic Effects of Oxytocin
    Endocr. Rev. (IF 15.167) Pub Date : 2019-12-05
    McCormack S, Blevins J, Lawson E.

    There is growing evidence that oxytocin (OXT), a hypothalamic hormone well recognized for its effects in inducing parturition and lactation, has important metabolic effects in both sexes. The purpose of this review is to summarize the physiologic effects of OXT on metabolism and to explore its therapeutic potential for metabolic disorders. In model systems, OXT promotes weight loss by decreasing energy intake. Pair-feeding studies suggest that OXT-induced weight loss may also be partly due to increased energy expenditure and/or lipolysis. In humans, OXT appears to modulate both homeostatic and reward-driven food intake, though the observed response depends on nutrient milieu (e.g., obese vs. non-obese), clinical characteristics (e.g., sex), and experimental paradigm. In animal models, OXT is anabolic to muscle and bone, which is consistent with OXT-induced weight loss occurring primarily via fat loss. In some human observational studies, circulating OXT concentrations are also positively associated with lean mass and bone mineral density. The impact of exogenous OXT on human obesity is the focus of ongoing investigation. Future randomized, placebo-controlled clinical trials in humans should include rigorous, standardized, and detailed assessments of adherence, adverse effects, pharmacokinetics/pharmacodynamics, and efficacy in the diverse populations that may benefit from OXT, in particular those in whom hypothalamic OXT signaling may be abnormal or impaired (e.g., individuals with Sim1deficiency, Prader-Willi syndrome, or craniopharyngioma). Future studies will also have the opportunity to investigate the characteristics of new OXT mimetic peptides, and the obligation to consider long-term effects, especially when OXT is given to children and adolescents.

    更新日期:2019-12-05
  • Leptin – is it thermogenic?
    Endocr. Rev. (IF 15.167) Pub Date : 2019-11-27
    Fischer A, Cannon B, Nedergaard J.

    Animals that lack the hormone leptin become grossly obese, purportedly for two reasons: increased food intake and decreased energy expenditure (thermogenesis). This review examines the experimental evidence for the thermogenesis component. Analysis of the data available lead us to conclude that the reports indicating hypometabolism in the leptin-deficient ob/ob mice (as well as in the leptin-receptor-deficient db/db mice and fa/fa rats) derive from a misleading calculation artefact resulting from expression of energy expenditure per g body weight and not per intact organism. Correspondingly, the body weight-reducing effects of leptin are not augmented by enhanced thermogenesis. Congruent with this, there is no evidence that the ob/ob mouse demonstrates atrophied brown adipose tissue or diminished levels of total UCP1 mRNA or protein when the ob mutation is studied on the inbred C57BL/6 mouse background – but a reduced sympathetic nerve activity is observed. On the outbred “Aston” mouse background, brown adipose tissue atrophy is seen, but whether this is of quantitative significance for the development of obesity has not been demonstrated. We conclude that leptin is not a thermogenic hormone. Rather, leptin has effects on body temperature regulation, by opposing torpor bouts and by shifting thermoregulatory thresholds. The central pathways behind these effects are largely unexplored.

    更新日期:2019-11-28
  • Thyroid hormone transporters
    Endocr. Rev. (IF 15.167) Pub Date : 2019-11-22
    Groeneweg S, van Geest F, Peeters R, et al.

    Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporters (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1 and SLC17A4 are currently known as transporters displaying highest specificity towards thyroid hormones. Structure-function studies using homology modelling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight in the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease.

    更新日期:2019-11-22
  • Review: Diabetes, Obesity and Cancer - Pathophysiology and Clinical Implications
    Endocr. Rev. (IF 15.167) Pub Date : 2019-11-13
    Lega I, Lipscombe L.

    Obesity and diabetes have both been associated with an increased risk of cancer. In the face of increasing obesity and diabetes rates worldwide, this is a worrying trend for cancer rates. Factors such as hyperinsulinemia, chronic inflammation, anti-hyperglycemic medications and shared risk factors have all been identified as potential mechanisms underlying the relationship. The most common obesity- and diabetes-related cancers are endometrial, colorectal and post menopausal breast cancers. In this review, we summarize the existing evidence that describes the complex relationship between obesity, diabetes and cancer focusing on epidemiologic and pathophysiologic evidence, also reviewing the role of anti-hyperglycemic agents, novel research approaches such as Mendelian Randomization as well as methodologic limitations of existing research. In addition, we also describe the bi-directional relationship between diabetes and cancer with a review of the evidence summarizing the risk of diabetes following cancer treatment. We conclude this review by providing clinical implications that are relevant for caring for patients with obesity, diabetes and cancer and provide recommendations for improving both clinical care and research for patients with these conditions.

    更新日期:2019-11-13
  • Fibrous dysplasia/McCune-Albright syndrome: a rare, mosaic disease of Gαs activation
    Endocr. Rev. (IF 15.167) Pub Date : 2019-11-01
    Boyce A, Collins M.

    Fibrous dysplasia/McCune-Albright syndrome (FD/MAS) is a rare disorder of striking complexity. It arises from somatic, gain-of-function mutations in GNAS, leading to mosaic Gαs activation and inappropriate production of intracellular cyclic adenosine monophosphate (AMP). The clinical phenotype is largely determined by the location and extent of affected tissues, and the pathophysiologic effects of Gαs activation within these tissues. In bone, Gαs activation results in impaired differentiation of skeletal stem cells, leading to discrete skeletal lesions prone to fracture, deformity, and pain. Extraskeletal manifestations include a variable combination of hyperpigmented macules and hyperfunctioning endocrinopathies. Distinctive age-related changes in disease development has key effects on histologic, radiographic, and clinical features. FD/MAS thus presents along a uniquely broad clinical spectrum, and the resulting challenges in diagnosis and management can be difficult for clinicians. This review presents FD/MAS in the context of a mosaic disorder of Gαs activation, providing an intellectual framework within which to understand, evaluate, and treat this interesting disease. It includes a comprehensive summary of current understanding of FD/MAS pathogenesis, and a detailed discussion of clinical presentation and management. Critical areas of unmet need are highlighted, including discussion of key challenges and potential solutions to advance research and clinical care in FD/MAS.

    更新日期:2019-11-01
  • Leydig Cells in the Adult Testis: Characterization, Regulation and Potential Applications
    Endocr. Rev. (IF 15.167) Pub Date : 2019-11-01
    Chen P, Zirkin B, Chen H.

    Androgen deficiency (hypogonadism) affects males of all ages. Testosterone replacement therapy (TRT) is effective in restoring serum testosterone and relieving symptoms. TRT, however, is reported to have possible adverse side-effects in part because testosterone is administered, not produced in response to the hypothalamic–pituitary–gonadal (HPG) axis. Progress in stem cell biology offers potential alternatives for treating hypogonadism. Adult Leydig cells (ALCs) are generated by stem Leydig cells (SLCs) during puberty. SLCs persist in the adult testis. Considerable progress has been made in the identification, isolation, expansion and differentiation of SLCs in vitro. In addition to forming ALCs, SLCs are multipotent, with the ability to give rise to all three major cell lineages of typical mesenchymal stem cells, including osteoblasts, adipocytes, and chondrocytes. Several regulatory factors, including desert hedgehog and platelet-derived growth factor, have been reported to play key roles in the proliferation and differentiation of SLCs into the Leydig lineage. In addition, stem cells from several non-steroidogenic sources including embryonic stem cells, induced pluripotent stem cells, mature fibroblasts, and mesenchymal stem cells (MSCs) from bone marrow, adipose tissue, and umbilical cord have been transdifferentiated into Leydig-like cells (LLCs) under a variety of induction protocols. ALCs generated from SLCs in vitro, and LLCs, have been successfully transplanted into ALC-depleted animals, restoring serum testosterone levels under HPG control. However, important questions remain, including: For how long will the transplanted cells continue to function? Which induction protocol is safest and most effective? For translational purposes, more work is needed with primate cells, especially human.

    更新日期:2019-11-01
  • TSH Receptor Cleavage Into Subunits and Shedding of the A-Subunit; A Molecular and Clinical Perspective.
    Endocr. Rev. (IF 15.167) Pub Date : 2016-07-28
    Basil Rapoport,Sandra M McLachlan

    The TSH receptor (TSHR) on the surface of thyrocytes is unique among the glycoprotein hormone receptors in comprising two subunits: an extracellular A-subunit, and a largely transmembrane and cytosolic B-subunit. Unlike its ligand TSH, whose subunits are encoded by two genes, the TSHR is expressed as a single polypeptide that subsequently undergoes intramolecular cleavage into disulfide-linked subunits. Cleavage is associated with removal of a C-peptide region, a mechanism similar in some respects to insulin cleavage into disulfide linked A- and B-subunits with lossofaC-peptideregion. The potential pathophysiological importance of TSHR cleavage into A-and B-subunits is that some A-subunits are shed from the cell surface. Considerable experimental evidence supports the concept that A-subunit shedding in genetically susceptible individuals is a factor contributing to the induction and/or affinity maturation of pathogenic thyroid-stimulating autoantibodies, the direct cause of Graves' disease. The noncleaving gonadotropin receptors are not associated with autoantibodies that induce a "Graves' disease of the gonads." We also review herein current information on the location of the cleavage sites, the enzyme(s) responsible for cleavage, the mechanism by which A-subunits are shed, and the effects of cleavage on receptor signaling. (Endocrine Reviews 37: 114-134, 2016).

    更新日期:2019-11-01
  • Discovering Genes Essential to the Hypothalamic Regulation of Human Reproduction Using a Human Disease Model: Adjusting to Life in the "-Omics" Era.
    Endocr. Rev. (IF 15.167) Pub Date : 2016-07-28
    M I Stamou,K H Cox,William F Crowley

    The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3)substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery. (Endocrine Reviews 36: 603-621, 2015).

    更新日期:2019-11-01
  • 更新日期:2019-11-01
  • Intraovarian control of early folliculogenesis.
    Endocr. Rev. (IF 15.167) Pub Date : 2014-09-10
    Aaron J W Hsueh,Kazuhiro Kawamura,Yuan Cheng,Bart C J M Fauser

    Although hormonal regulation of ovarian follicle development has been extensively investigated, most studies concentrate on the development of early antral follicles to the preovulatory stage, leading to the successful use of exogenous FSH for infertility treatment. Accumulating data indicate that preantral follicles are under stringent regulation by FSH and local intraovarian factors, thus providing the possibility to develop new therapeutic approaches. Granulosa cell-derived C-type natriuretic factor not only suppresses the final maturation of oocytes to undergo germinal vesicle breakdown before ovulation but also promotes preantral and antral follicle growth. In addition, several oocyte- and granulosa cell-derived factors stimulate preantral follicle growth by acting through wingless, receptor tyrosine kinase, receptor serine kinase, and other signaling pathways. In contrast, the ovarian Hippo signaling pathway constrains follicle growth and disruption of Hippo signaling promotes the secretion of downstream CCN growth factors capable of promoting follicle growth. Although the exact hormonal factors involved in primordial follicle activation has yet to be elucidated, the protein kinase B (AKT) and mammalian target of rapamycin signaling pathways are important for the activation of dormant primordial follicles. Hippo signaling disruption after ovarian fragmentation, combined with treating ovarian fragments with phosphatase and tensin homolog (PTEN) inhibitors and phosphoinositide-3-kinase stimulators to augment AKT signaling, promote the growth of preantral follicles in patients with primary ovarian insufficiency, leading to a new infertility intervention for such patients. Elucidation of intraovarian mechanisms underlying early folliculogenesis may allow the development of novel therapeutic strategies for patients diagnosed with primary ovarian insufficiency, polycystic ovary syndrome, and poor ovarian response to FSH stimulation, as well as for infertile women of advanced reproductive age.

    更新日期:2019-11-01
  • Comprehensive overview of the structure and regulation of the glucocorticoid receptor.
    Endocr. Rev. (IF 15.167) Pub Date : 2014-06-18
    Sofie Vandevyver,Lien Dejager,Claude Libert

    Glucocorticoids are among the most prescribed drugs worldwide for the treatment of numerous immune and inflammatory disorders. They exert their actions by binding to the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily. There are several GR isoforms resulting from alternative RNA splicing and translation initiation of the GR transcript. Additionally, these isoforms are all subject to several transcriptional, post-transcriptional, and post-translational modifications, all of which affect the protein's stability and/or function. In this review, we summarize recent knowledge on the distinct GR isoforms and the processes that generate them. We also review the importance of all known transcriptional, post-transcriptional, and post-translational modifications, including the regulation of GR by microRNAs. Moreover, we discuss the crucial role of the putative GR-bound DNA sequence as an allosteric ligand influencing GR structure and activity. Finally, we describe how the differential composition and distinct regulation at multiple levels of different GR species could account for the wide and diverse effects of glucocorticoids.

    更新日期:2019-11-01
  • Chaperoning G protein-coupled receptors: from cell biology to therapeutics.
    Endocr. Rev. (IF 15.167) Pub Date : 2014-03-26
    Ya-Xiong Tao,P Michael Conn

    G protein-coupled receptors (GPCRs) are membrane proteins that traverse the plasma membrane seven times (hence, are also called 7TM receptors). The polytopic structure of GPCRs makes the folding of GPCRs difficult and complex. Indeed, many wild-type GPCRs are not folded optimally, and defects in folding are the most common cause of genetic diseases due to GPCR mutations. Both general and receptor-specific molecular chaperones aid the folding of GPCRs. Chemical chaperones have been shown to be able to correct the misfolding in mutant GPCRs, proving to be important tools for studying the structure-function relationship of GPCRs. However, their potential therapeutic value is very limited. Pharmacological chaperones (pharmacoperones) are potentially important novel therapeutics for treating genetic diseases caused by mutations in GPCR genes that resulted in misfolded mutant proteins. Pharmacoperones also increase cell surface expression of wild-type GPCRs; therefore, they could be used to treat diseases that do not harbor mutations in GPCRs. Recent studies have shown that indeed pharmacoperones work in both experimental animals and patients. High-throughput assays have been developed to identify new pharmacoperones that could be used as therapeutics for a number of endocrine and other genetic diseases.

    更新日期:2019-11-01
  • The effects of light at night on circadian clocks and metabolism.
    Endocr. Rev. (IF 15.167) Pub Date : 2014-03-29
    Laura K Fonken,Randy J Nelson

    Most organisms display endogenously produced ∼ 24-hour fluctuations in physiology and behavior, termed circadian rhythms. Circadian rhythms are driven by a transcriptional-translational feedback loop that is hierarchically expressed throughout the brain and body, with the suprachiasmatic nucleus of the hypothalamus serving as the master circadian oscillator at the top of the hierarchy. Appropriate circadian regulation is important for many homeostatic functions including energy regulation. Multiple genes involved in nutrient metabolism display rhythmic oscillations, and metabolically related hormones such as glucagon, insulin, ghrelin, leptin, and corticosterone are released in a circadian fashion. Mice harboring mutations in circadian clock genes alter feeding behavior, endocrine signaling, and dietary fat absorption. Moreover, misalignment between behavioral and molecular circadian clocks can result in obesity in both rodents and humans. Importantly, circadian rhythms are most potently synchronized to the external environment by light information and exposure to light at night potentially disrupts circadian system function. Since the advent of electric lights around the turn of the 20th century, exposure to artificial and irregular light schedules has become commonplace. The increase in exposure to light at night parallels the global increase in the prevalence of obesity and metabolic disorders. In this review, we propose that exposure to light at night alters metabolic function through disruption of the circadian system. We first provide an introduction to the circadian system, with a specific emphasis on the effects of light on circadian rhythms. Next we address interactions between the circadian system and metabolism. Finally, we review current experimental and epidemiological work directly associating exposure to light at night and metabolism.

    更新日期:2019-11-01
  • Chlorinated persistent organic pollutants, obesity, and type 2 diabetes.
    Endocr. Rev. (IF 15.167) Pub Date : 2014-02-04
    Duk-Hee Lee,Miquel Porta,David R Jacobs,Laura N Vandenberg

    Persistent organic pollutants (POPs) are lipophilic compounds that travel with lipids and accumulate mainly in adipose tissue. Recent human evidence links low-dose POPs to an increased risk of type 2 diabetes (T2D). Because humans are contaminated by POP mixtures and POPs possibly have nonmonotonic dose-response relations with T2D, critical methodological issues arise in evaluating human findings. This review summarizes epidemiological results on chlorinated POPs and T2D, and relevant experimental evidence. It also discusses how features of POPs can affect inferences in humans. The evidence as a whole suggests that, rather than a few individual POPs, background exposure to POP mixtures-including organochlorine pesticides and polychlorinated biphenyls-can increase T2D risk in humans. Inconsistent statistical significance for individual POPs may arise due to distributional differences in POP mixtures among populations. Differences in the observed shape of the dose-response curves among human studies may reflect an inverted U-shaped association secondary to mitochondrial dysfunction or endocrine disruption. Finally, we examine the relationship between POPs and obesity. There is evidence in animal studies that low-dose POP mixtures are obesogenic. However, relationships between POPs and obesity in humans have been inconsistent. Adipose tissue plays a dual role of promoting T2D and providing a relatively safe place to store POPs. Large prospective studies with serial measurements of a broad range of POPs, adiposity, and clinically relevant biomarkers are needed to disentangle the interrelationships among POPs, obesity, and the development of T2D. Also needed are laboratory experiments that more closely mimic real-world POP doses, mixtures, and exposure duration in humans.

    更新日期:2019-11-01
  • 更新日期:2019-11-01
  • 更新日期:2019-11-01
  • 更新日期:2019-11-01
  • 更新日期:2019-11-01
  • 更新日期:2019-11-01
  • 更新日期:2019-11-01
  • The rachitic tooth.
    Endocr. Rev. (IF 15.167) Pub Date : 2013-08-14
    Brian L Foster,Francisco H Nociti,Martha J Somerman

    Teeth are mineralized organs composed of three unique hard tissues, enamel, dentin, and cementum, and supported by the surrounding alveolar bone. Although odontogenesis differs from osteogenesis in several respects, tooth mineralization is susceptible to similar developmental failures as bone. Here we discuss conditions fitting under the umbrella of rickets, which traditionally referred to skeletal disease associated with vitamin D deficiency but has been more recently expanded to include newly identified factors involved in endocrine regulation of vitamin D, phosphate, and calcium, including phosphate-regulating endopeptidase homolog, X-linked, fibroblast growth factor 23, and dentin matrix protein 1. Systemic mineral metabolism intersects with local regulation of mineralization, and factors including tissue nonspecific alkaline phosphatase are necessary for proper mineralization, where rickets can result from loss of activity of tissue nonspecific alkaline phosphatase. Individuals suffering from rickets often bear the additional burden of a defective dentition, and transgenic mouse models have aided in understanding the nature and mechanisms involved in tooth defects, which may or may not parallel rachitic bone defects. This report reviews dental effects of the range of rachitic disorders, including discussion of etiologies of hereditary forms of rickets, a survey of resulting bone and tooth mineralization disorders, and a discussion of mechanisms, known and hypothesized, involved in the observed dental pathologies. Descriptions of human pathology are augmented by analysis of transgenic mouse models, and new interpretations are brought to bear on questions of how teeth are affected under conditions of rickets. In short, the rachitic tooth will be revealed.

    更新日期:2019-11-01
  • 11β-Hydroxysteroid dehydrogenase 1: translational and therapeutic aspects.
    Endocr. Rev. (IF 15.167) Pub Date : 2013-04-25
    Laura L Gathercole,Gareth G Lavery,Stuart A Morgan,Mark S Cooper,Alexandra J Sinclair,Jeremy W Tomlinson,Paul M Stewart

    11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) interconverts the inactive glucocorticoid cortisone and its active form cortisol. It is widely expressed and, although bidirectional, in vivo it functions predominantly as an oxoreductase, generating active glucocorticoid. This allows glucocorticoid receptor activation to be regulated at a prereceptor level in a tissue-specific manner. In this review, we will discuss the enzymology and molecular biology of 11β-HSD1 and the molecular basis of cortisone reductase deficiencies. We will also address how altered 11β-HSD1 activity has been implicated in a number of disease states, and we will explore its role in the physiology and pathologies of different tissues. Finally, we will address the current status of selective 11β-HSD1 inhibitors that are in development and being tested in phase II trials for patients with the metabolic syndrome. Although the data are preliminary, therapeutic inhibition of 11β-HSD1 is also an exciting prospect for the treatment of a variety of other disorders such as osteoporosis, glaucoma, intracranial hypertension, and cognitive decline.

    更新日期:2019-11-01
  • Cardiovascular biology of the incretin system.
    Endocr. Rev. (IF 15.167) Pub Date : 2012-02-11
    John R Ussher,Daniel J Drucker

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that enhances glucose-stimulated insulin secretion and exerts direct and indirect actions on the cardiovascular system. GLP-1 and its related incretin hormone, glucose-dependent insulinotropic polypeptide, are rapidly inactivated by the enzyme dipeptidyl peptidase 4 (DPP-4), a key determinant of incretin bioactivity. Two classes of medications that enhance incretin action, GLP-1 receptor (GLP-1R) agonists and DPP-4 inhibitors, are used for the treatment of type 2 diabetes mellitus. We review herein the cardiovascular biology of GLP-1R agonists and DPP-4 inhibitors, including direct and indirect effects on cardiomyocytes, blood vessels, adipocytes, the control of blood pressure, and postprandial lipoprotein secretion. Both GLP-1R activation and DPP-4 inhibition exert multiple cardioprotective actions in preclinical models of cardiovascular dysfunction, and short-term studies in human subjects appear to demonstrate modest yet beneficial actions on cardiac function in subjects with ischemic heart disease. Incretin-based agents control body weight, improve glycemic control with a low risk of hypoglycemia, decrease blood pressure, inhibit the secretion of intestinal chylomicrons, and reduce inflammation in preclinical studies. Nevertheless, there is limited information on the cardiovascular actions of these agents in patients with diabetes and established cardiovascular disease. Hence, a more complete understanding of the cardiovascular risk to benefit ratio of incretin-based therapies will require completion of long-term cardiovascular outcome studies currently underway in patients with type 2 diabetes mellitus.

    更新日期:2019-11-01
  • Genetic syndromes of severe insulin resistance.
    Endocr. Rev. (IF 15.167) Pub Date : 2011-05-04
    Robert K Semple,David B Savage,Elaine K Cochran,Phillip Gorden,Stephen O'Rahilly

    Insulin resistance is among the most prevalent endocrine derangements in the world, and it is closely associated with major diseases of global reach including diabetes mellitus, atherosclerosis, nonalcoholic fatty liver disease, and ovulatory dysfunction. It is most commonly found in those with obesity but may also occur in an unusually severe form in rare patients with monogenic defects. Such patients may loosely be grouped into those with primary disorders of insulin signaling and those with defects in adipose tissue development or function (lipodystrophy). The severe insulin resistance of both subgroups puts patients at risk of accelerated complications and poses severe challenges in clinical management. However, the clinical disorders produced by different genetic defects are often biochemically and clinically distinct and are associated with distinct risks of complications. This means that optimal management of affected patients should take into account the specific natural history of each condition. In clinical practice, they are often underdiagnosed, however, with low rates of identification of the underlying genetic defect, a problem compounded by confusing and overlapping nomenclature and classification. We now review recent developments in understanding of genetic forms of severe insulin resistance and/or lipodystrophy and suggest a revised classification based on growing knowledge of the underlying pathophysiology.

    更新日期:2019-11-01
  • Genetic regulation of pituitary gland development in human and mouse.
    Endocr. Rev. (IF 15.167) Pub Date : 2009-10-20
    Daniel Kelberman,Karine Rizzoti,Robin Lovell-Badge,Iain C A F Robinson,Mehul T Dattani

    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans.

    更新日期:2019-11-01
  • A lifetime of aldosterone excess: long-term consequences of altered regulation of aldosterone production for cardiovascular function.
    Endocr. Rev. (IF 15.167) Pub Date : 2008-02-23
    John M C Connell,Scott M MacKenzie,E Marie Freel,Robert Fraser,Eleanor Davies

    Up to 15% of patients with essential hypertension have inappropriate regulation of aldosterone; although only a minority have distinct adrenal tumors, recent evidence shows that mineralocorticoid receptor activation contributes to the age-related blood pressure rise and illustrates the importance of aldosterone in determining cardiovascular risk. Aldosterone also has a major role in progression and outcome of ischemic heart disease. These data highlight the need to understand better the regulation of aldosterone synthesis and its action. Aldosterone effects are mediated mainly through classical nuclear receptors that alter gene transcription. In classic epithelial target tissues, signaling mechanisms are relatively well defined. However, aldosterone has major effects in nonepithelial tissues that include increased synthesis of proinflammatory molecules and reactive oxygen species; it remains unclear how these effects are controlled and how receptor specificity is maintained. Variation in aldosterone production reflects interaction of genetic and environmental factors. Although the environmental factors are well understood, the genetic control of aldosterone synthesis is still the subject of debate. Aldosterone synthase (encoded by the CYP11B2 gene) controls conversion of deoxycorticosterone to aldosterone. Polymorphic variation in CYP11B2 is associated with increased risk of hypertension, but the molecular mechanism that accounts for this is not known. Altered 11beta-hydroxylase efficiency (conversion of deoxycortisol to cortisol) as a consequence of variation in the neighboring gene (CYP11B1) may be important in contributing to altered control of aldosterone synthesis, so that the risk of hypertension may reflect a digenic effect, a concept that is discussed further. There is evidence that a long-term increase in aldosterone production from early life is determined by an interaction of genetic and environmental factors, leading to the eventual phenotypes of aldosterone-associated hypertension and cardiovascular damage in middle age and beyond. The importance of aldosterone has generated interest in its therapeutic modulation. Disadvantages associated with spironolactone (altered libido, gynecomastia) have led to a search for alternative mineralocorticoid receptor antagonists. Of these, eplerenone has been shown to reduce cardiovascular risk after myocardial infarction. The benefits and disadvantages of this therapeutic approach are discussed.

    更新日期:2019-11-01
  • Evidence for a continuum of genetic, phenotypic, and biochemical abnormalities in children with growth hormone insensitivity.
    Endocr. Rev. (IF 15.167) Pub Date : 2011-04-29
    Alessia David,Vivian Hwa,Louise A Metherell,Irène Netchine,Cecilia Camacho-Hübner,Adrian J L Clark,Ron G Rosenfeld,Martin O Savage

    GH insensitivity (GHI) presents in childhood as growth failure and in its severe form is associated with dysmorphic and metabolic abnormalities. GHI may be caused by genetic defects in the GH-IGF-I axis or by acquired states such as chronic illness. This article discusses the former category. The field of GHI due to mutations affecting GH action has evolved considerably since the original description of the extreme phenotype related to homozygous GH receptor (GHR) mutations over 40 yr ago. A continuum of genetic, phenotypic, and biochemical abnormalities can be defined associated with clinically relevant defects in linear growth. The role and mechanisms of the GH-IGF-I axis in normal human growth is discussed, followed by descriptions of mutations in GHR, STAT5B, PTPN11, IGF1, IGFALS, IGF1R, and GH1 defects causing bioinactive GH or anti-GH antibodies. These defects are associated with a range of genetic, clinical, and hormonal characteristics. Genetic abnormalities causing growth failure that is less severe than the extreme phenotype are emphasized, together with an analysis of height and serum IGF-I across the spectrum of different types of GHR defects. An overall view of genotype and phenotype relationships is presented, together with an updated approach to the assessment of the patient with GHI, focusing on investigation of the GH-IGF-I axis and relevant molecular studies contributing to this diagnosis.

    更新日期:2019-11-01
  • 更新日期:2019-11-01
  • Dihydrotestosterone: Biochemistry, Physiology, and Clinical Implications of Elevated Blood Levels.
    Endocr. Rev. (IF 15.167) Pub Date : 2017-05-05
    Ronald S Swerdloff,Robert E Dudley,Stephanie T Page,Christina Wang,Wael A Salameh

    Benefits associated with lowered serum DHT levels after 5α-reductase inhibitor (5AR-I) therapy in men have contributed to a misconception that circulating DHT levels are an important stimulus for androgenic action in target tissues (e.g., prostate). Yet evidence from clinical studies indicates that intracellular concentrations of androgens (particularly in androgen-sensitive tissues) are essentially independent of circulating levels. To assess the clinical significance of modest elevations in serum DHT and the DHT/testosterone (T) ratio observed in response to common T replacement therapy, a comprehensive review of the published literature was performed to identify relevant data. Although the primary focus of this review is about DHT in men, we also provide a brief overview of DHT in women. The available published data are limited by the lack of large, well-controlled studies of long duration that are sufficiently powered to expose subtle safety signals. Nonetheless, the preponderance of available clinical data indicates that modest elevations in circulating levels of DHT in response to androgen therapy should not be of concern in clinical practice. Elevated DHT has not been associated with increased risk of prostate disease (e.g., cancer or benign hyperplasia) nor does it appear to have any systemic effects on cardiovascular disease safety parameters (including increased risk of polycythemia) beyond those commonly observed with available T preparations. Well-controlled, long-term studies of transdermal DHT preparations have failed to identify safety signals unique to markedly elevated circulating DHT concentrations or signals materially different from T.

    更新日期:2019-11-01
  • Müllerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications.
    Endocr. Rev. (IF 15.167) Pub Date : 2001-10-06
    J Teixeira,S Maheswaran,P K Donahoe

    Dr. Alfred Jost pioneered the field of reproductive endocrinology with his seminal observation that two hormones produced by the testes are required for the male embryo to develop a normal internal reproductive tract. T induces the Wolffian ducts to differentiate into epididymides, vasa deferens, and seminal vesicles. Müllerian inhibiting substance (MIS) causes regression of the Müllerian ducts, which in its absence would normally develop into the Fallopian tubes, uterus, and upper vagina as is observed in female embryos. This review will summarize our current understanding of molecular mechanisms underlying the function of MIS both as a fetal gonadal hormone that causes Müllerian duct regression and as an adult hormone, the roles for which are currently being investigated, i.e., inhibition of steroidogenesis, germ cell development, and cancer. We will also address the regulation of MIS expression as one of the first genes expressed after the commitment of the bipotential gonads to differentiate into testes under the influence of SRY, the gene on the sex-determining region of the Y chromosome. We will discuss what is known regarding MIS signal transduction, which as with other members of the TGFbeta family of growth and differentiation factors, occurs through a heteromeric complex of single transmembrane serine/threonine kinase receptors to effect downstream signaling events, including Smad, nuclear factor-kappaB, beta-catenin, and p16 activation. Finally, we will assess the clinical relevance of studying MIS in patients with persistent Müllerian duct syndrome and our efforts to determine the therapeutic value of MIS for patients with ovarian and other MIS receptor-expressing cancers.

    更新日期:2019-11-01
  • Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications.
    Endocr. Rev. (IF 15.167) Pub Date : 2012-10-16
    Evanthia Diamanti-Kandarakis,Andrea Dunaif

    Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin resistance, independent of obesity. This article summarizes the state of the science since we last reviewed the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1 serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's metabolic actions in skeletal muscle. Insulin functions as a co-gonadotropin through its cognate receptor to modulate ovarian steroidogenesis. Genetic disruption of insulin signaling in the brain has indicated that this pathway is important for ovulation and body weight regulation. These insights have been directly translated into a novel therapy for PCOS with insulin-sensitizing drugs. Furthermore, androgens contribute to insulin resistance in PCOS. PCOS may also have developmental origins due to androgen exposure at critical periods or to intrauterine growth restriction. PCOS is a complex genetic disease, and first-degree relatives have reproductive and metabolic phenotypes. Several PCOS genetic susceptibility loci have been mapped and replicated. Some of the same susceptibility genes contribute to disease risk in Chinese and European PCOS populations, suggesting that PCOS is an ancient trait.

    更新日期:2019-11-01
  • Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations.
    Endocr. Rev. (IF 15.167) Pub Date : 1989-02-01
    W H Daughaday,P Rotwein

    There is currently widespread interest in the IGFs (IGF-I and IGF-II) and their roles in the regulation of growth and differentiation of an ever increasing number of tissues are being reported. This selective review focused on the current state of our knowledge about the structure of mammalian IGFs and the multiple forms of mRNAs which arise from alternative splicing and promoter sites which arise from gene transcription. Current progress in the immunological measurement of the IGF is reviewed including different strategies for avoiding binding protein interference. The results of measurements of serum IGF-I and IGF-II in fetus and mother and at various stages of postnatal life are described. Existing knowledge of the concentration of these peptides in body fluids and tissues are considered. Last, an attempt is made to indicate circumstances in which the IGFs are exerting their actions in an autocrine/paracrine mode and when endocrine actions predominate. In the latter context it was concluded that an important role for GH action on skeletal tissues via hepatic production of IGF-I and endocrine action of IGF-I on growth cartilage is likely.

    更新日期:2019-11-01
  • Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy.
    Endocr. Rev. (IF 15.167) Pub Date : 2017-03-23
    Yu Zhang,Xinghui Sun,Basak Icli,Mark W Feinberg

    Chronic, low-grade systemic inflammation and impaired microvascular function are critical hallmarks in the development of insulin resistance. Accordingly, insulin resistance is a major risk factor for type 2 diabetes and cardiovascular disease. Accumulating studies demonstrate that restoration of impaired function of the diabetic macro- and microvasculature may ameliorate a range of cardiovascular disease states and diabetes-associated complications. In this review, we focus on the emerging role of microRNAs (miRNAs), noncoding RNAs that fine-tune target gene expression and signaling pathways, in insulin-responsive tissues and cell types important for maintaining optimal vascular homeostasis and preventing the sequelae of diabetes-induced end organ injury. We highlight current pathophysiological paradigms of miRNAs and their targets involved in regulating the diabetic microvasculature in a range of diabetes-associated complications such as retinopathy, nephropathy, wound healing, and myocardial injury. We provide an update of the potential use of circulating miRNAs diagnostically in type I or type II diabetes. Finally, we discuss emerging delivery platforms for manipulating miRNA expression or function as the next frontier in therapeutic intervention to improve diabetes-associated microvascular dysfunction and its attendant clinical consequences.

    更新日期:2019-11-01
  • Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes?
    Endocr. Rev. (IF 15.167) Pub Date : 2009-01-20
    Richard J Johnson,Santos E Perez-Pozo,Yuri Y Sautin,Jacek Manitius,Laura Gabriela Sanchez-Lozada,Daniel I Feig,Mohamed Shafiu,Mark Segal,Richard J Glassock,Michiko Shimada,Carlos Roncal,Takahiko Nakagawa

    We propose that excessive fructose intake (>50 g/d) may be one of the underlying etiologies of metabolic syndrome and type 2 diabetes. The primary sources of fructose are sugar (sucrose) and high fructose corn syrup. First, fructose intake correlates closely with the rate of diabetes worldwide. Second, unlike other sugars, the ingestion of excessive fructose induces features of metabolic syndrome in both laboratory animals and humans. Third, fructose appears to mediate the metabolic syndrome in part by raising uric acid, and there are now extensive experimental and clinical data supporting uric acid in the pathogenesis of metabolic syndrome. Fourth, environmental and genetic considerations provide a potential explanation of why certain groups might be more susceptible to developing diabetes. Finally, we discuss the counterarguments associated with the hypothesis and a potential explanation for these findings. If diabetes might result from excessive intake of fructose, then simple public health measures could have a major impact on improving the overall health of our populace.

    更新日期:2019-11-01
  • Derailed estrogen signaling and breast cancer: an authentic couple.
    Endocr. Rev. (IF 15.167) Pub Date : 2012-09-06
    Bramanandam Manavathi,Oindrilla Dey,Vijay Narsihma Reddy Gajulapalli,Raghavendra Singh Bhatia,Suresh Bugide,Rakesh Kumar

    Estrogen or 17β-estradiol, a steroid hormone, plays a critical role in the development of mammary gland via acting through specific receptors. In particular, estrogen receptor-α (ERα) acts as a transcription factor and/or a signal transducer while participating in the development of mammary gland and breast cancer. Accumulating evidence suggests that the transcriptional activity of ERα is altered by the action of nuclear receptor coregulators and might be responsible, at least in part, for the development of breast cancer. In addition, this process is driven by various posttranslational modifications of ERα, implicating active participation of the upstream receptor modifying enzymes in breast cancer progression. Emerging studies suggest that the biological outcome of breast cancer cells is also influenced by the cross talk between microRNA and ERα signaling, as well as by breast cancer stem cells. Thus, multiple regulatory controls of ERα render mammary epithelium at risk for transformation upon deregulation of normal homeostasis. Given the importance that ERα signaling has in breast cancer development, here we will highlight how the activity of ERα is controlled by various regulators in a spatial and temporal manner, impacting the progression of the disease. We will also discuss the possible therapeutic value of ERα modulators as alternative drug targets to retard the progression of breast cancer.

    更新日期:2019-11-01
  • The role of blood vessels, endothelial cells, and vascular pericytes in insulin secretion and peripheral insulin action.
    Endocr. Rev. (IF 15.167) Pub Date : 2010-02-19
    Oliver C Richards,Summer M Raines,Alan D Attie

    The pathogenesis of type 2 diabetes is intimately intertwined with the vasculature. Insulin must efficiently enter the bloodstream from pancreatic beta-cells, circulate throughout the body, and efficiently exit the bloodstream to reach target tissues and mediate its effects. Defects in the vasculature of pancreatic islets can lead to diabetic phenotypes. Similarly, insulin resistance is accompanied by defects in the vasculature of skeletal muscle, which ultimately reduce the ability of insulin and nutrients to reach myocytes. An underappreciated participant in these processes is the vascular pericyte. Pericytes, the smooth muscle-like cells lining the outsides of blood vessels throughout the body, have not been directly implicated in insulin secretion or peripheral insulin delivery. Here, we review the role of the vasculature in insulin secretion, islet function, and peripheral insulin delivery, and highlight a potential role for the vascular pericyte in these processes.

    更新日期:2019-11-01
  • Small G proteins in islet beta-cell function.
    Endocr. Rev. (IF 15.167) Pub Date : 2009-11-06
    Anjaneyulu Kowluru

    Glucose-stimulated insulin secretion from the islet beta-cell involves a sequence of metabolic events and an interplay between a wide range of signaling pathways leading to the generation of second messengers (e.g., cyclic nucleotides, adenine and guanine nucleotides, soluble lipid messengers) and mobilization of calcium ions. Consequent to the generation of necessary signals, the insulin-laden secretory granules are transported from distal sites to the plasma membrane for fusion and release of their cargo into the circulation. The secretory granule transport underlies precise changes in cytoskeletal architecture involving a well-coordinated cross-talk between various signaling proteins, including small molecular mass GTP-binding proteins (G proteins) and their respective effector proteins. The purpose of this article is to provide an overview of current understanding of the identity of small G proteins (e.g., Cdc42, Rac1, and ARF-6) and their corresponding regulatory factors (e.g., GDP/GTP-exchange factors, GDP-dissociation inhibitors) in the pancreatic beta-cell. Plausible mechanisms underlying regulation of these signaling proteins by insulin secretagogues are also discussed. In addition to their positive modulatory roles, certain small G proteins also contribute to the metabolic dysfunction and demise of the islet beta-cell seen in in vitro and in vivo models of impaired insulin secretion and diabetes. Emerging evidence also suggests significant insulin secretory abnormalities in small G protein knockout animals, further emphasizing vital roles for these proteins in normal health and function of the islet beta-cell. Potential significance of these experimental observations from multiple laboratories and possible avenues for future research in this area of islet research are highlighted.

    更新日期:2019-11-01
  • Pathomechanisms of type 2 diabetes genes.
    Endocr. Rev. (IF 15.167) Pub Date : 2009-09-15
    Harald Staiger,Fausto Machicao,Andreas Fritsche,Hans-Ulrich Häring

    Type 2 diabetes mellitus is a complex metabolic disease that is caused by insulin resistance and beta-cell dysfunction. Furthermore, type 2 diabetes has an evident genetic component and represents a polygenic disease. During the last decade, considerable progress was made in the identification of type 2 diabetes risk genes. This was crucially influenced by the development of affordable high-density single nucleotide polymorphism (SNP) arrays that prompted several successful genome-wide association scans in large case-control cohorts. Subsequent to the identification of type 2 diabetes risk SNPs, cohorts thoroughly phenotyped for prediabetic traits with elaborate in vivo methods allowed an initial characterization of the pathomechanisms of these SNPs. Although the underlying molecular mechanisms are still incompletely understood, a surprising result of these pathomechanistic investigations was that most of the risk SNPs affect beta-cell function. This favors a beta-cell-centric view on the genetics of type 2 diabetes. The aim of this review is to summarize the current knowledge about the type 2 diabetes risk genes and their variants' pathomechanisms.

    更新日期:2019-11-01
  • Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function.
    Endocr. Rev. (IF 15.167) Pub Date : 2001-10-06
    P Gilon,J C Henquin

    Acetylcholine (ACh), the major parasympathetic neurotransmitter, is released by intrapancreatic nerve endings during the preabsorptive and absorptive phases of feeding. In beta-cells, ACh binds to muscarinic M(3) receptors and exerts complex effects, which culminate in an increase of glucose (nutrient)-induced insulin secretion. Activation of PLC generates diacylglycerol. Activation of PLA(2) produces arachidonic acid and lysophosphatidylcholine. These phospholipid-derived messengers, particularly diacylglycerol, activate PKC, thereby increasing the efficiency of free cytosolic Ca(2+) concentration ([Ca(2+)](c)) on exocytosis of insulin granules. IP3, also produced by PLC, causes a rapid elevation of [Ca(2+)](c) by mobilizing Ca(2+) from the endoplasmic reticulum; the resulting fall in Ca(2+) in the organelle produces a small capacitative Ca(2+) entry. ACh also depolarizes the plasma membrane of beta-cells by a Na(+)- dependent mechanism. When the plasma membrane is already depolarized by secretagogues such as glucose, this additional depolarization induces a sustained increase in [Ca(2+)](c). Surprisingly, ACh can also inhibit voltage-dependent Ca(2+) channels and stimulate Ca(2+) efflux when [Ca(2+)](c) is elevated. However, under physiological conditions, the net effect of ACh on [Ca(2+)](c) is always positive. The insulinotropic effect of ACh results from two mechanisms: one involves a rise in [Ca(2+)](c) and the other involves a marked, PKC-mediated increase in the efficiency of Ca(2+) on exocytosis. The paper also discusses the mechanisms explaining the glucose dependence of the effects of ACh on insulin release.

    更新日期:2019-11-01
  • The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity.
    Endocr. Rev. (IF 15.167) Pub Date : 1998-08-26
    J E Gerich

    Despite the fact that it is the prevalent view that insulin resistance is the main genetic factor predisposing to development of type 2 diabetes, review of several lines of evidence in the literature indicates a lack of overwhelming support for this concept. In fact, the literature better supports the case of impaired insulin secretion being the initial and main genetic factor predisposing to type 2 diabetes, especially 1) the studies in people at high risk to subsequently develop type 2 diabetes (discordant monozygotic twins and women with previous gestational diabetes), 2) the studies demonstrating compete alleviation of insulin resistance with weight loss, and 3) the studies finding that people with type 2 diabetes or IGT can have impaired insulin secretion and no insulin resistance compared with well matched NGT subjects. The fact that insulin resistance may be largely an acquired problem in no way lessens its importance in the pathogenesis of type 2 diabetes. Life style changes (exercise, weight reduction) and pharmacological agents (e.g., biguanides and thiazolidendiones) that reduce insulin resistance or increase insulin sensitivity clearly have major beneficial effects (122, 144-146, 153-155).

    更新日期:2019-11-01
  • 更新日期:2019-11-01
  • Diacylglycerol production, Ca2+ influx, and protein kinase C activation in sustained cellular responses.
    Endocr. Rev. (IF 15.167) Pub Date : 1995-10-01
    H Rasmussen,C M Isales,R Calle,D Throckmorton,M Anderson,J Gasalla-Herraiz,R McCarthy

    更新日期:2019-11-01
  • Aspects of the pathogenesis of type 2 diabetes.
    Endocr. Rev. (IF 15.167) Pub Date : 1984-01-01
    S Efendić,R Luft,A Wajngot

    更新日期:2019-11-01
  • 更新日期:2019-11-01
  • 更新日期:2019-11-01
  • Interleukin-1 and beta-cell function: more than one second messenger?
    Endocr. Rev. (IF 15.167) Pub Date : 1992-08-01
    J M Argilés,J López-Soriano,M A Ortiz,J M Pou,F J López-Soriano

    Cytokines, in particular IL-1, released mainly by infiltrating macrophages, can be one of the key mediators of immune-induced beta-cell destruction in IDDM. IL-1 is able to induce suppression of insulin release and biosynthesis in cultured rat pancreatic islets. In addition, the cytokine shows clear cytotoxic effects leading to beta-cell death. The proposed mechanisms of action of IL-1 after binding to the beta-cell receptors are varied. Concerning the cytotoxic effects of the cytokine, the role of oxygen free radicals, mainly derived from arachidonate metabolism (see Fig. 1) is clear, and possibly potentiated by a cytosolic Na(+)-mediated alkalinization of the beta-cell exposed to the cytokine. In fact, an increased influx of Na+ may explain some of the cytotoxicity since it results in concomitant water uptake leading to swelling of the endoplasmic reticulum. NO formation also seems to be related to the cytokine-induced cytotoxicity since inhibition of the NO synthase abolishes the effects of the cytokine (see Fig. 1). In relation to the inhibitory effects of the cytokine on the beta-cell, different studies point toward almost all known second messenger systems already described for several hormones, such as cAMP formation, increased phospholipase C activity, changes in cytosolic Ca++, and altered gene transcription (see Fig. 1). Of particular interest is the protease activation associated with IL-1 (a serine protease) that seems to be clearly connected with the effects of the cytokine upon the beta-cell. In conclusion, the different studies devoted to the problem of IL-1 signal transduction on the beta-cell seem to indicate that the action of the cytokine on the pancreatic insulin-secreting cells is not associated with an individual second messenger system but rather seems to be related to a plurifactorial transduction system.

    更新日期:2019-11-01
  • Glucose toxicity.
    Endocr. Rev. (IF 15.167) Pub Date : 1992-08-01
    H Yki-Järvinen

    更新日期:2019-11-01
  • The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited.
    Endocr. Rev. (IF 15.167) Pub Date : 2016-07-28
    Robert L Rosenfield,David A Ehrmann

    Polycystic ovary syndrome (PCOS) was hypothesized to result from functional ovarian hyperandrogenism (FOH) due to dysregulation of androgen secretion in 1989-1995. Subsequent studies have supported and amplified this hypothesis. When defined as otherwise unexplained hyperandrogenic oligoanovulation, two-thirds of PCOS cases have functionally typical FOH, characterized by 17-hydroxyprogesterone hyperresponsiveness to gonadotropin stimulation. Two-thirds of the remaining PCOS have FOH detectable by testosterone elevation after suppression of adrenal androgen production. About 3% of PCOS have a related isolated functional adrenal hyperandrogenism. The remaining PCOS cases are mild and lack evidence of steroid secretory abnormalities; most of these are obese, which we postulate to account for their atypical PCOS. Approximately half of normal women with polycystic ovarian morphology (PCOM) have subclinical FOH-related steroidogenic defects. Theca cells from polycystic ovaries of classic PCOS patients in long-term culture have an intrinsic steroidogenic dysregulation that can account for the steroidogenic abnormalities typical of FOH. These cells overexpress most steroidogenic enzymes, particularly cytochrome P450c17. Overexpression of a protein identified by genome-wide association screening, differentially expressed in normal and neoplastic development 1A.V2, in normal theca cells has reproduced this PCOS phenotype in vitro. A metabolic syndrome of obesity-related and/or intrinsic insulin resistance occurs in about half of PCOS patients, and the compensatory hyperinsulinism has tissue-selective effects, which include aggravation of hyperandrogenism. PCOS seems to arise as a complex trait that results from the interaction of diverse genetic and environmental factors. Heritable factors include PCOM, hyperandrogenemia, insulin resistance, and insulin secretory defects. Environmental factors include prenatal androgen exposure and poor fetal growth, whereas acquired obesity is a major postnatal factor. The variety of pathways involved and lack of a common thread attests to the multifactorial nature and heterogeneity of the syndrome. Further research into the fundamental basis of the disorder will be necessary to optimally correct androgen levels, ovulation, and metabolic homeostasis.

    更新日期:2019-11-01
  • Molecular, endocrine, and genetic mechanisms of arterial calcification.
    Endocr. Rev. (IF 15.167) Pub Date : 2004-08-06
    Terence M Doherty,Lorraine A Fitzpatrick,Daisuke Inoue,Jian-Hua Qiao,Michael C Fishbein,Robert C Detrano,Prediman K Shah,Tripathi B Rajavashisth

    Pathologists have recognized arterial calcification for over a century. Recent years have witnessed a strong resurgence of interest in atherosclerotic plaque calcification because it: 1) can be easily detected noninvasively; 2) closely correlates with the amount of atherosclerotic plaque; 3) serves as a surrogate measure for atherosclerosis, allowing preclinical detection of the disease; and 4) is associated with heightened risk of adverse cardiovascular events. There are two major types of calcification in arteries: calcification of the media tunica layer (sometimes called Mönckeberg's sclerosis), and calcification within subdomains of atherosclerotic plaque within the intimal layer of the artery. There are important similarities and differences between these two entities. Of particular interest are increasing parallels between cellular and molecular features of arterial calcification and bone biology, and this has led to accelerating interest in understanding how and why bone-like mineral deposits may form in arteries. Here, we review the two major pathological types of arterial calcification, the proposed models of calcification, and endocrine and genetic determinants that affect arterial calcification. In addition, we highlight areas requiring further investigation.

    更新日期:2019-11-01
  • Oxidative stress in the pathogenesis of diabetic neuropathy.
    Endocr. Rev. (IF 15.167) Pub Date : 2004-08-06
    Andrea M Vincent,James W Russell,Phillip Low,Eva L Feldman

    Oxidative stress results from a cell or tissue failing to detoxify the free radicals that are produced during metabolic activity. Diabetes is characterized by chronic hyperglycemia that produces dysregulation of cellular metabolism. This review explores the concept that diabetes overloads glucose metabolic pathways, resulting in excess free radical production and oxidative stress. Evidence is presented to support the idea that both chronic and acute hyperglycemia cause oxidative stress in the peripheral nervous system that can promote the development of diabetic neuropathy. Proteins that are damaged by oxidative stress have decreased biological activity leading to loss of energy metabolism, cell signaling, transport, and, ultimately, to cell death. Examination of the data from animal and cell culture models of diabetes, as well as clinical trials of antioxidants, strongly implicates hyperglycemia-induced oxidative stress in diabetic neuropathy. We conclude that striving for superior antioxidative therapies remains essential for the prevention of neuropathy in diabetic patients.

    更新日期:2019-11-01
  • Vascular endothelial growth factor: basic science and clinical progress.
    Endocr. Rev. (IF 15.167) Pub Date : 2004-08-06
    Napoleone Ferrara

    Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in a variety of in vivo models. Hypoxia has been shown to be a major inducer of VEGF gene transcription. The tyrosine kinases Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) are high-affinity VEGF receptors. The role of VEGF in developmental angiogenesis is emphasized by the finding that loss of a single VEGF allele results in defective vascularization and early embryonic lethality. VEGF is critical also for reproductive and bone angiogenesis. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. In situ hybridization studies demonstrate expression of VEGF mRNA in the majority of human tumors. Anti-VEGF monoclonal antibodies and other VEGF inhibitors block the growth of several tumor cell lines in nude mice. Clinical trials with various VEGF inhibitors in a variety of malignancies are ongoing. Very recently, an anti-VEGF monoclonal antibody (bevacizumab; Avastin) has been approved by the Food and Drug Administration as a first-line treatment for metastatic colorectal cancer in combination with chemotherapy. Furthermore, VEGF is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.

    更新日期:2019-11-01
  • Functional imaging of endocrine tumors: role of positron emission tomography.
    Endocr. Rev. (IF 15.167) Pub Date : 2004-08-06
    Karel Pacak,Graeme Eisenhofer,David S Goldstein

    This article provides an update on functional imaging approaches for diagnostic localization of endocrine tumors, with emphasis on positron emission tomography (PET). [18F]Fluorodeoxyglucose PET scanning is now a widely accepted imaging approach in clinical oncology. Benefits include improved patient outcome facilitated by staging and monitoring of disease and better treatment planning. [18F]Fluorodeoxyglucose PET is also useful in some endocrine tumors, particularly in recurrent or metastatic thyroid cancer where the degree of accumulation of the radionuclide has prognostic value. However, this imaging approach does not take full advantage of the unique characteristics of endocrine tumors. Endocrine tumor cells take up hormone precursors, express receptors and transporters, and synthesize, store, and release hormones. These characteristics offer highly specific targets for PET. Radiopharmaceuticals developed for such approaches include 6-[18F]fluorodopamine, and [11C]hydroxyephedrine for localization of pheochromocytomas, [11C]5-hydroxytryptophan and [11C]L-dihydroxyphenylalanine for carcinoid tumors, and [11C]metomidate for adrenocortical tumors. These functional imaging approaches are not meant to supplant conventional imaging modalities but should be used conjointly to better identify specific characteristics of endocrine tumors. This represents a relatively new and evolving approach to imaging that promises to answer specific questions about the behavior and growth of endocrine tumors, their malignant potential, and responsiveness to different treatment modalities.

    更新日期:2019-11-01
  • Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications.
    Endocr. Rev. (IF 15.167) Pub Date : 2004-08-06
    Zhi You Fang,Johannes B Prins,Thomas H Marwick

    The presence of a diabetic cardiomyopathy, independent of hypertension and coronary artery disease, is still controversial. This systematic review seeks to evaluate the evidence for the existence of this condition, to clarify the possible mechanisms responsible, and to consider possible therapeutic implications. The existence of a diabetic cardiomyopathy is supported by epidemiological findings showing the association of diabetes with heart failure; clinical studies confirming the association of diabetes with left ventricular dysfunction independent of hypertension, coronary artery disease, and other heart disease; and experimental evidence of myocardial structural and functional changes. The most important mechanisms of diabetic cardiomyopathy are metabolic disturbances (depletion of glucose transporter 4, increased free fatty acids, carnitine deficiency, changes in calcium homeostasis), myocardial fibrosis (association with increases in angiotensin II, IGF-I, and inflammatory cytokines), small vessel disease (microangiopathy, impaired coronary flow reserve, and endothelial dysfunction), cardiac autonomic neuropathy (denervation and alterations in myocardial catecholamine levels), and insulin resistance (hyperinsulinemia and reduced insulin sensitivity). This review presents evidence that diabetes is associated with a cardiomyopathy, independent of comorbid conditions, and that metabolic disturbances, myocardial fibrosis, small vessel disease, cardiac autonomic neuropathy, and insulin resistance may all contribute to the development of diabetic heart disease.

    更新日期:2019-11-01
  • Multiple and overlapping combinatorial codes orchestrate hormonal responsiveness and dictate cell-specific expression of the genes encoding luteinizing hormone.
    Endocr. Rev. (IF 15.167) Pub Date : 2004-08-06
    Joan S Jorgensen,Christine C Quirk,John H Nilson

    Normal reproductive function in mammals requires precise control of LH synthesis and secretion by gonadotropes of the anterior pituitary. Synthesis of LH requires expression of two genes [alpha-glycoprotein subunit (alphaGSU) and LHbeta] located on different chromosomes. Hormones from the hypothalamus and gonads modulate transcription of both genes as well as secretion of the biologically active LH heterodimer. In males and females, the transcriptional tone of the genes encoding alphaGSU and LHbeta reflects dynamic integration of a positive signal provided by GnRH from hypothalamic neurons and negative signals emanating from gonadal steroids. Although alphaGSU and LHbeta genes respond transcriptionally in the same manner to changes in hormonal input, different combinations of regulatory elements orchestrate their response. These hormone-responsive regulatory elements are also integral members of much larger combinatorial codes responsible for targeting expression of alphaGSU and LHbeta genes to gonadotropes. In this review, we will profile the genomic landscape of the promoter-regulatory region of both genes, depicting elements and factors that contribute to gonadotrope-specific expression and hormonal regulation. Within this context, we will highlight the different combinatorial codes that control transcriptional responses, particularly those that mediate the opposing effects of GnRH and one of the sex steroids, androgens. We will use this framework to suggest that GnRH and androgens attain the same transcriptional endpoint through combinatorial codes unique to alphaGSU and LHbeta. This parallelism permits the dynamic and coordinate regulation of two genes that encode a single hormone.

    更新日期:2019-11-01
  • The diagnosis and medical management of advanced neuroendocrine tumors.
    Endocr. Rev. (IF 15.167) Pub Date : 2004-06-08
    Gregory A Kaltsas,G Michael Besser,Ashley B Grossman

    Neuroendocrine tumors (NETs) constitute a heterogeneous group of neoplasms that originate from endocrine glands such as the pituitary, the parathyroids, and the (neuroendocrine) adrenal, as well as endocrine islets within glandular tissue (thyroid or pancreatic) and cells dispersed between exocrine cells, such as endocrine cells of the digestive (gastroenteropancreatic) and respiratory tracts. Conventionally, NETs may present with a wide variety of functional or nonfunctional endocrine syndromes and may be familial and have other associated tumors. Assessment of specific or general tumor markers offers high sensitivity in establishing the diagnosis and can also have prognostic significance. Imaging modalities include endoscopic ultrasonography, computed tomography and magnetic resonance imaging, and particularly, scintigraphy with somatostatin analogs and metaiodobenzylguanidine. Successful treatment of disseminated NETs requires a multimodal approach; radical tumor surgery may be curative but is rarely possible. Well-differentiated and slow-growing gastroenteropancreatic tumors should be treated with somatostatin analogs or alpha-interferon, with chemotherapy being reserved for poorly differentiated and progressive tumors. Therapy with radionuclides may be used for tumors exhibiting uptake to a diagnostic scan, either after surgery to eradicate microscopic residual disease or later if conventional treatment or biotherapy fails. Maintenance of the quality of life should be a priority, particularly because patients with disseminated disease may experience prolonged survival.

    更新日期:2019-11-01
  • Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin.
    Endocr. Rev. (IF 15.167) Pub Date : 2004-06-08
    Aart J van der Lely,Matthias Tschöp,Mark L Heiman,Ezio Ghigo

    Ghrelin is a peptide predominantly produced by the stomach. Ghrelin displays strong GH-releasing activity. This activity is mediated by the activation of the so-called GH secretagogue receptor type 1a. This receptor had been shown to be specific for a family of synthetic, peptidyl and nonpeptidyl GH secretagogues. Apart from a potent GH-releasing action, ghrelin has other activities including stimulation of lactotroph and corticotroph function, influence on the pituitary gonadal axis, stimulation of appetite, control of energy balance, influence on sleep and behavior, control of gastric motility and acid secretion, and influence on pancreatic exocrine and endocrine function as well as on glucose metabolism. Cardiovascular actions and modulation of proliferation of neoplastic cells, as well as of the immune system, are other actions of ghrelin. Therefore, we consider ghrelin a gastrointestinal peptide contributing to the regulation of diverse functions of the gut-brain axis. So, there is indeed a possibility that ghrelin analogs, acting as either agonists or antagonists, might have clinical impact.

    更新日期:2019-11-01
  • Androgens and bone.
    Endocr. Rev. (IF 15.167) Pub Date : 2004-06-08
    Dirk Vanderschueren,Liesbeth Vandenput,Steven Boonen,Marie K Lindberg,Roger Bouillon,Claes Ohlsson

    Loss of estrogens or androgens increases the rate of bone remodeling by removing restraining effects on osteoblastogenesis and osteoclastogenesis, and also causes a focal imbalance between resorption and formation by prolonging the lifespan of osteoclasts and shortening the lifespan of osteoblasts. Conversely, androgens, as well as estrogens, maintain cancellous bone mass and integrity, regardless of age or sex. Although androgens, via the androgen receptor (AR), and estrogens, via the estrogen receptors (ERs), can exert these effects, their relative contribution remains uncertain. Recent studies suggest that androgen action on cancellous bone depends on (local) aromatization of androgens into estrogens. However, at least in rodents, androgen action on cancellous bone can be directly mediated via AR activation, even in the absence of ERs. Androgens also increase cortical bone size via stimulation of both longitudinal and radial growth. First, androgens, like estrogens, have a biphasic effect on endochondral bone formation: at the start of puberty, sex steroids stimulate endochondral bone formation, whereas they induce epiphyseal closure at the end of puberty. Androgen action on the growth plate is, however, clearly mediated via aromatization in estrogens and interaction with ERalpha. Androgens increase radial growth, whereas estrogens decrease periosteal bone formation. This effect of androgens may be important because bone strength in males seems to be determined by relatively higher periosteal bone formation and, therefore, greater bone dimensions, relative to muscle mass at older age. Experiments in mice again suggest that both the AR and ERalpha pathways are involved in androgen action on radial bone growth. ERbeta may mediate growth-limiting effects of estrogens in the female but does not seem to be involved in the regulation of bone size in males. In conclusion, androgens may protect men against osteoporosis via maintenance of cancellous bone mass and expansion of cortical bone. Such androgen action on bone is mediated by the AR and ERalpha.

    更新日期:2019-11-01
  • Testosterone effects on the breast: implications for testosterone therapy for women.
    Endocr. Rev. (IF 15.167) Pub Date : 2004-06-08
    Woraluk Somboonporn,Susan R Davis,

    Androgens have important physiological effects in women. Postmenopausal androgen replacement, most commonly as testosterone therapy, is becoming increasingly widespread. This is despite the lack of clear guidelines regarding the diagnosis of androgen insufficiency, optimal therapeutic doses, and long-term safety data. With respect to the breast specifically, there is the potential for exogenous testosterone to exert either androgenic or indirect estrogenic actions, with the latter potentially increasing breast cancer risk. In experimental studies, androgens exhibit growth-inhibitory and apoptotic effects in some, but not all, breast cancer cell lines. Differing effects between cell lines appear to be due primarily to variations in concentrations of specific coregulatory proteins at the receptor level. In rodent breast cancer models, androgen action is antiproliferative and proapoptotic, and is mediated via the androgen receptor, despite the potential for testosterone and dehydroepiandrosterone to be aromatized to estrogen. The results from studies in rhesus monkeys suggest that testosterone may serve as a natural endogenous protector of the breast and limit mitogenic and cancer-promoting effects of estrogen on mammary epithelium. Epidemiological studies have significant methodological limitations and provide inconclusive results. The strongest data for exogenous testosterone therapy comes from primate studies. Based on such simulations, inclusion of testosterone in postmenopausal estrogen-progestin regimens has the potential to ameliorate the stimulating effects of combined estrogen-progestin on the breast. Research addressing this is warranted; however, the number of women that would be required for an adequately powered randomized controlled trial renders such a study unlikely.

    更新日期:2019-11-01
Contents have been reproduced by permission of the publishers.
导出
全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
加州大学洛杉矶分校
上海纽约大学William Glover
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug