当前期刊: Progress in Lipid Research Go to current issue    加入关注   
显示样式:        排序: 导出
我的关注
我的收藏
您暂时未登录!
登录
  • A global perspective on the crosstalk between saturated fatty acids and Toll-like receptor 4 in the etiology of inflammation and insulin resistance
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2019-12-20
    Bin Li; Joseph C.K. Leung; Loretta Y.Y. Chan; Wai Han Yiu; Sydney C.W. Tang

    Obesity is featured by chronic systemic low-grade inflammation that eventually contributes to the development of insulin resistance. Toll-like receptor 4 (TLR4) is an important mediator that triggers the innate immune response by activating inflammatory signaling cascades. Human, animal and cell culture studies identified saturated fatty acids (SFAs), the dominant non-esterified fatty acid (NEFA) in the circulation of obese subjects, as non-microbial agonists that trigger the inflammatory response via activating TLR4 signaling, which acts as an important causative link between fatty acid overload, chronic low-grade inflammation and the related metabolic aberrations. The interaction between SFAs and TLR4 may be modulated through the myeloid differentiation primary response gene 88-dependent and independent signaling pathway. Greater understanding of the crosstalk between dietary SFAs and TLR4 signaling in the pathogenesis of metabolic imbalance may facilitate the design of a more efficient pharmacological strategy to alleviate the risk of developing chronic diseases elicited in part by fatty acid overload. The current review discusses recent advances in the impact of crosstalk between TLR4 and SFAs on inflammation and insulin resistance in multiple cell types, tissues and organs in the context of metabolic dysregulation.

    更新日期:2019-12-21
  • The (endo)cannabinoid signaling in female reproduction: What are the latest advances?
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2019-12-18
    Sandra Cecconi; Cinzia Rapino; Valentina Di Nisio; Gianna Rossi; Mauro Maccarrone

    Cannabis extracts like marijuana have the highest consumption rate worldwide. Yet, their societal acceptance as recreational and therapeutic drugs could represent a serious hazard to female human reproduction, because cannabis ingredients [termed (phyto)cannabinoids] can perturb an endogenous system of lipid signals known as endocannabinoids. Accumulated evidence on animal models and humans has demonstrated a crucial role of these endogenous signals on different aspects of female reproduction, where they act through an ensamble of proteins that synthesize, transport, degrade and traffic them. Several reports have recently evidenced the potential role of endocannabinoids as biomarkers of female infertility for disease treatment and prevention, as well as their possible epigenetic effects on pregnancy. The purpose of this review is to provide an update of data collected in the last decade on the effects of cannabinoids and endocannabinoids on female reproductive events, from development and maturation of follicles and oocytes, to fertilization, oviductal transport, implantation and labor. In this context, a particular attention has ben devoted to the ovary and the production of fertilizable oocytes, because recent studies have addressed this hot topic with conflicting results among species.

    更新日期:2019-12-18
  • Mammalian phospholipase D: Function, and therapeutics
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2019-12-09
    M.I. McDermott, Y. Wang, M.J.O. Wakelam, V.A. Bankaitis

    Despite being discovered over 60 years ago, the precise role of Phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals, and they display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.

    更新日期:2019-12-09
  • The highly unnatural fatty acid profile of cells in culture
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2019-12-03
    Paul L. Else

    The fatty acid profile of cells in culture are unlike any natural cell with twice the monounsaturated (MUFA) and half the polyunsaturated fatty acids (PUFA) of natural cells (Mol%). This is not due to cell lines primarily being derived from cancers but due to limited access to lipid and inability to make PUFA de novo as vertebrate cells. Classic culture methods use media with 10% serum (the only exogenous source of lipid). Fetal bovine serum (FBS), the serum of choice has a low level of lipid and cholesterol compared to other sera and at 10% of media provides 2–3% of the fatty acid and cholesterol, 1% of the PUFA and 0.03% of the essential fatty acid linoleic acid (18:2n-6) available to cells in the body. Since vertebrate cell lines cannot make PUFA they synthesise MUFA, offsetting their PUFA deficit and reducing their fatty acid diversity. Stem and primary cells in culture appear to be similarly affected, with a rapid loss of their natural fatty acid compositions. The unnatural lipid composition of cells in culture has substantial implications for examining natural stems cell in culture, and for investigations of cellular mechanisms using cell lines based on the pervasive influence of fats.

    更新日期:2019-12-04
  • Eighteen‑carbon trans fatty acids and inflammation in the context of atherosclerosis
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2019-11-02
    Carina A. Valenzuela, Ella J. Baker, Elizabeth A. Miles, Philip C. Calder

    Endothelial dysfunction is a pro-inflammatory state characterized by chronic activation of the endothelium, which leads to atherosclerosis and cardiovascular disease (CVD). Intake of trans fatty acids (TFAs) is associated with an increased risk of CVD. This risk is usually associated with industrial TFAs (iTFAs) rather than ruminant TFAs (rTFAs); however it is not clear how specific TFA isomers differ in their biological activity and mechanisms of action with regard to inflammation. Here we review the literature on 18‑carbon TFAs, including the research associating their intake or levels with CVD and studies relating 18‑carbon TFA exposure to modulation of inflammatory processes. The evidence associating iTFAs with CVD risk factors is fairly consistent and studies in humans usually show a relation between iTFAs and higher levels of inflammatory markers. In contrast, studies in humans, animals and in vitro suggest that rTFAs have null or mildly beneficial effects in cardiovascular health, metabolic parameters and inflammatory markers, although the evidence is not always consistent. More studies are needed to better identify the beneficial and detrimental effects of the different TFAs, including those with 18 carbons.

    更新日期:2019-11-18
  • Mammalian sphingoid bases: Biophysical, physiological and pathological properties
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2019-08-22
    A.C. Carreira, T.C. Santos, M.A. Lone, E. Zupančič, E. Lloyd-Evans, R.F.M. de Almeida, T. Hornemann, L.C. Silva

    Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.

    更新日期:2019-11-18
  • Biochemistry of very-long-chain and long-chain ceramides in cystic fibrosis and other diseases: The importance of side chain
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2019-08-21
    Dušan Garić, Juan B. De Sanctis, Juhi Shah, Daciana Catalina Dumut, Danuta Radzioch

    Ceramides, the principal building blocks of all sphingolipids, have attracted the attention of many scientists around the world interested in developing treatments for cystic fibrosis, the most common genetic disease of Caucasians. Many years of fruitful research in this field have produced some fundamentally important, yet controversial results. Here, we aimed to summarize the current knowledge on the role of long- and very-long- chain ceramides, the most abundant species of ceramides in animal cells, in cystic fibrosis and other diseases. We also aim to explain the importance of the length of their side chain in the context of stability of transmembrane proteins through a concise synthesis of their biophysical chemistry, cell biology, and physiology. This review also addresses several remaining riddles in this field. Finally, we discuss the technical challenges associated with the analysis and quantification of ceramides. We provide the evaluation of the antibodies used for ceramide quantification and we demonstrate their lack of specificity. Results and discussion presented here will be of interest to anyone studying these enigmatic lipids.

    更新日期:2019-11-13
  • Galectin-3 modulation of T-cell activation: mechanisms of membrane remodelling
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2019-11-01
    Rebecca C. Gilson, Sachith D. Gunasinghe, Ludger Johannes, Katharina Gaus

    Galectin-3 (Gal3) is a multifaceted protein which belongs to a family of lectins and binds β-galactosides. Gal3 expression is altered in many types of cancer, with increased expression generally associated with poor prognosis. Although the mechanisms remain unknown, Gal3 has been implicated in several biological processes involved in cancer progression, including suppression of T cell-mediated immune responses. Extracellular Gal3 binding to the plasma membrane of T cells alters membrane organization and the formation of an immunological synapse. Its multivalent capacity allows Gal3 to interact specifically with different membrane proteins and lipids, influencing endocytosis, trafficking and T cell receptor signalling. The ability of Gal3 to inhibit T cell responses may provide a mechanism by which Gal3 aids in cancer progression. In this review, we seek to give an overview of the mechanisms by which Gal3 alters the spatial organization of cell membranes and how these processes impact on T cell activation.

    更新日期:2019-11-01
  • Intestinal absorption of long-chain fatty acids: evidence and uncertainties.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2009-03-13
    Isabelle Niot,Hélène Poirier,Thi Thu Trang Tran,Philippe Besnard

    Over the two last decades, cloning of proteins responsible for trafficking and metabolic fate of long-chain fatty acids (LCFA) in gut has provided new insights on cellular and molecular mechanisms involved in fat absorption. To this systematic cloning period, functional genomics has succeeded in providing a new set of surprises. Disruption of several genes, thought to play a crucial role in LCFA absorption, did not lead to clear phenotypes. This observation raises the question of the real physiological role of lipid-binding proteins and lipid-metabolizing enzymes expressed in enterocytes. The goal of this review is to analyze present knowledge concerning the main steps of intestinal fat absorption from LCFA uptake to lipoprotein release and to assess their impact on health.

    更新日期:2019-11-01
  • Enzymes of triacylglycerol synthesis and their regulation.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-12-05
    Rosalind A Coleman,Douglas P Lee

    Since the pathways of glycerolipid biosynthesis were elucidated in the 1950's, considerable knowledge has been gained about the enzymes that catalyze the lipid biosynthetic reactions and the factors that regulate triacylglycerol biosynthesis. In the last few decades, in part due to advances in technology and the wide availability of nucleotide and amino acid sequences, we have made enormous strides in our understanding of these enzymes at the molecular level. In many cases, sequence information obtained from lipid biosynthetic enzymes of prokaryotes and yeast has provided the means to search the genomic and expressed sequence tag databases for mammalian homologs and most of the genes have now been identified. Surprisingly, multiple isoforms appear to catalyze the same chemical reactions, suggesting that each isoform may play a distinct functional role in the pathway of triacylglycerol and phospholipid biosynthesis. This review focuses on the de novo biosynthesis of triacylglycerol in eukaryotic cells, the isoenzymes that are involved, their subcellular locations, how they are regulated, and their putative individual roles in glycerolipid biosynthesis.

    更新日期:2019-11-01
  • The digestion of dietary triacylglycerols.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-12-05
    Huiling Mu,Carl-Erik Høy

    Dietary triacylglycerols (TAGs) are the major lipid components in the human diet and they are carriers of energy as well as important fatty acids. Many factors affect the digestion and absorption of TAGs. Evidence is accumulating that, in addition to the overall fatty acid profile, the TAG structure and the species composition are of importance when considering the nutritional effects of a dietary fat. There is good evidence that in addition to its short-term effects in the intestine on absorption of fatty acids the TAG structure also has long-term effects resulting from differences in the profile of absorbed fatty acids. Observations on the different atherogenic potential of dietary fats have given us a clear indication of the importance of the TAG structure for absorption of saturated fatty acids. In this context, one may focus on the effects of the structure of dietary fats as such, or one may speculate additionally on the possibilities of modifying the structure of fats to affect their absorption and the distribution of the fatty acids in the body after digestion and uptake. In this review we will summarize diverse aspects of TAG digestion and absorption, as well as the influences of the fatty acid composition and the intramolecular structure of dietary TAGs on their digestion and absorption.

    更新日期:2019-11-01
  • Regulation of stearoyl-CoA desaturases and role in metabolism.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-12-05
    James M Ntambi,Makoto Miyazaki

    Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme catalyzing the synthesis of monounsaturated fatty acids, mainly oleate (18:1) and palmitoleate (16:1). These represent the major monounsaturated fatty acids of membrane phospholipids, triglycerides, wax esters and cholesterol esters. The ratio of saturated to monounsaturated fatty acids affects phospholipid composition and alteration in this ratio has been implicated in a variety of disease states including cardiovascular disease, obesity, diabetes, neurological disease, and cancer. For this reason, the expression of SCD is of physiological significance in both normal and disease states. Several SCD gene isoforms (SCD1, SCD2, SCD3) exist in the mouse and one SCD isoform that is highly homologous to the mouse SCD1 is well characterized in human. The physiological role of each SCD isoform and the reason for having three or more SCD gene isoforms in the rodent genome are currently unknown but could be related the substrate specificities of the isomers and their regulation through tissue-specific expression. The recent studies of asebia mouse strains that have a natural mutation in the SCD1 gene and a mouse model with a targeted disruption of the SCD1 gene have provided clues concerning the role that SCD1 and its endogenous products play in the regulation of metabolism.

    更新日期:2019-11-01
  • Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-11-26
    Arthur A Spector,Xiang Fang,Gary D Snyder,Neal L Weintraub

    Epoxyeicosatrienoic acids (EETs), which are synthesized from arachidonic acid by cytochrome P450 epoxygenases, function primarily as autocrine and paracrine effectors in the cardiovascular system and kidney. They modulate ion transport and gene expression, producing vasorelaxation as well as anti-inflammatory and pro-fibrinolytic effects. EETs are incorporated into the sn-2 position of phospholipids and are rapidly mobilized when a cell is treated with a Ca(2+) ionophore, suggesting that they may play a role in phospholipid-mediated signal transduction processes. Soluble epoxide hydrolase (sEH) converts EETs to dihydroxyeicosatrienoic acids (DHETs), and inhibition of sEH is a potential approach for enhancing the biological activity of EETs. EETs also undergo chain-elongation and beta-oxidation, and the accumulation of partial beta-oxidation products increases when sEH is inhibited. Some functional effects of EETs occur through activation of either the guanine nucleotide binding protein Galphas or the Src signal transduction pathways, suggesting that EETs act by binding to membrane receptors. However, other evidence indicates that the modulation of gene expression occurs through an intracellular action of EETs. Because of the diversity of biochemical and functional responses produced by EETs, it is doubtful that a single mechanism or signal transduction pathway can account for all of their actions.

    更新日期:2019-11-01
  • Elongation of long-chain fatty acids.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-11-26
    Amanda E Leonard,Suzette L Pereira,Howard Sprecher,Yung-Sheng Huang

    更新日期:2019-11-01
  • Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-11-26
    Makoto Murakami,Ichiro Kudo

    Prostanoids represent a group of lipid mediators that are produced from arachidonic acid via the cyclooxygenase pathway. Once formed, the prostanoids are released from the cells and act on their cognate receptors on cell surfaces to exert their biological actions. Of these, prostaglandin E(2) (PGE(2)) is the most common prostanoid, being produced by a wide variety of cells and tissues and has a broad range of bioactivity. Recent advance in this field has led to identification and characterization of a number of enzymes that play roles in the biosynthesis of PGE(2), namely phospholipase A(2), cyclooxygenase and terminal PGE synthase. Each of these three reactions can be rate-limiting and involves multiple enzymes/isozymes that can act in different phases of cell activation and exhibit distinct functional coupling. In this review, we will overview a recent understanding of the molecular biology, regulatory mechanisms, and physiological functions of these enzymes.

    更新日期:2019-11-01
  • Problems with essential fatty acids: time for a new paradigm?
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-10-16
    Stephen C Cunnane

    The term 'essential fatty acid' is ambiguous and inappropriately inclusive or exclusive of many polyunsaturated fatty acids. When applied most rigidly to linoleate and alpha-linolenate, this term excludes the now well accepted but conditional dietary need for two long chain polyunsaturates (arachidonate and docosahexaenoate) during infancy. In addition, because of the concomitant absence of dietary alpha-linolenate, essential fatty acid deficiency is a seriously flawed model that has probably led to significantly overestimating linoleate requirements. Linoleate and alpha-linolenate are more rapidly beta-oxidized and less easily replaced in tissue lipids than the common 'non-essential' fatty acids (palmitate, stearate, oleate). Carbon from linoleate and alpha-linolenate is recycled into palmitate and cholesterol in amounts frequently exceeding that used to make long chain polyunsaturates. These observations represent several problems with the concept of 'essential fatty acid', a term that connotes a more protected and important fatty acid than those which can be made endogenously. The metabolism of essential and non-essential fatty acids is clearly much more interconnected than previously understood. Replacing the term 'essential fatty acid' by existing but less biased terminology, i.e. polyunsaturates, omega3 or omega6 polyunsaturates, or naming the individual fatty acid(s) in question, would improve clarity and would potentially promote broader exploration of the functional and health attributes of polyunsaturated fatty acids.

    更新日期:2019-11-01
  • Membrane fluidity and the perception of environmental signals in cyanobacteria and plants.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-10-16
    Koji Mikami,Norio Murata

    Photosynthetic organisms, namely, plants and cyanobacteria, are directly exposed to changes in their environment and their survival depends on their ability to acclimate to such changes. Several lines of evidence suggest that temperature stress, such as unusually low or high temperatures, and osmotic stress might be perceived by plants and cyanobacteria via changes in the fluidity of their cell membranes. The availability of techniques for gene-targeted mutagenesis and gene transfer, as well as for the analysis of genomes and transcripts, has allowed us to examine and evaluate this hypothesis and its implications. In this review, we summarize recent studies of the regulation of gene expression by changes in the extent of unsaturation of fatty acids and membrane fluidity, and we present a discussion of the induction of gene expression by environmental stress and of sensors of environmental conditions and relationships between their activity and the fluidity of membranes in cyanobacteria and plants.

    更新日期:2019-11-01
  • Molecular mechanisms of lysophosphatidic acid action.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-10-16
    Gabor Tigyi,Abby L Parrill

    更新日期:2019-11-01
  • Regulation of fatty acid and cholesterol synthesis: co-operation or competition?
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-10-16
    Geoffrey F Gibbons

    Fatty acids and sterols originally evolved symbiotically as structural components of cell membranes. In some respects, control of their biosynthetic pathways reflects their mutual interdependence in defining changes in the physicochemical properties of the membranes in response to the changing internal and external cellular environments. In some tissues of higher animals, however, cholesterol and fatty acids have multifunctional roles. In particular, the liver synthesizes these lipids for export as multimolecular complexes in the form of micellar bile components and lipoproteins. Intrahepatic fatty acid and cholesterol synthesis is dependent upon the balance between hepatic output of these complexes and dietary input of fat and cholesterol. Thus physiological control of these synthetic processes is often co-ordinated at both the transcriptional and post-translational levels. On the other hand, changes in flux through major metabolic pathways, particularly during physiological transitions and as a result of genetic manipulation, affects substrate availability for these pathways. Under these circumstances, regulation reflects a compensatory response to ensure that flux through the lipid pathways remains unchanged. These regulatory changes can best be interpreted in terms of a Metabolic Control Analysis approach. In summary, flux through the fatty acid and cholesterol pathways reflects (a) cellular demand for these lipids, (b) a variable availability of substrates, (c) a combination of (a) and (b).

    更新日期:2019-11-01
  • Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-10-16
    S M Moghimi,J Szebeni

    This article critically examines and evaluates the likely mechanisms that contribute to prolonged circulation times of sterically protected nanoparticles and liposomes. It is generally assumed that the macrophage-resistant property of sterically protected particles is due to suppression in surface opsonization and protein adsorption. However, recent evidence shows that sterically stabilized particles are prone to opsonization particularly by the opsonic components of the complement system. We have evaluated these phenomena and discussed theories that reconcile complement activation and opsonization with prolonged circulation times. With respect to particle longevity, the physiological state of macrophages also plays a critical role. For example, stimulated or newly recruited macrophages can recognize and rapidly internalize sterically protected nanoparticles by opsonic-independent mechanisms. These concepts are also examined.

    更新日期:2019-11-01
  • Ligand-targeted liposomal anticancer drugs.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-06-20
    P Sapra,T M Allen

    Antibody or ligand-mediated targeting of liposomal anticancer drugs to antigens expressed selectively or over-expressed on tumor cells is increasingly being recognized as an effective strategy for increasing the therapeutic indices of anticancer drugs. This review summarizes some recent advances in the field of ligand-targeted liposomes (LTLs) for the delivery of anticancer drugs. New approaches used in the design and optimization of LTLs is discussed and the advantages and potential problems associated with their therapeutic applications are described. New technologies are widening the spectrum of ligands available for targeting and are allowing choices to be made regarding affinity, internalization and size. The time is rapidly approaching where we will see translation of anticancer drugs entrapped in LTLs to the clinic.

    更新日期:2019-11-01
  • Exposure of platelet membrane phosphatidylserine regulates blood coagulation.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-06-20
    Barry R Lentz

    This article addresses the role of platelet membrane phosphatidylserine (PS) in regulating the production of thrombin, the central regulatory molecule of blood coagulation. PS is normally located on the cytoplasmic face of the resting platelet membrane but appears on the plasma-oriented surface of discrete membrane vesicles that derive from activated platelets. Thrombin, the central molecule of coagulation, is produced from prothrombin by a complex ("prothrombinase") between factor Xa and its protein cofactor (factor V(a)) that forms on platelet-derived membranes. This complex enhances the rate of activation of prothrombin to thrombin by roughly 150,000 fold relative to factor X(a) in solution. It is widely accepted that the negatively charged surface of PS-containing platelet-derived membranes is at least partly responsible for this rate enhancement, although there is not universal agreement on mechanism by which this occurs. Our efforts have led to an alternative view, namely that PS molecules bind to discrete regulatory sites on both factors X(a) and V(a) and allosterically alter their proteolytic and cofactor activities. In this view, exposure of PS on the surface of activated platelet vesicles is a key regulatory event in blood coagulation, and PS serves as a second messenger in this regulatory process. This article reviews our knowledge of the prothrombinase reaction and summarizes recent evidence leading to this alternative viewpoint. This viewpoint suggests a key role for PS both in normal hemostasis and in thrombotic disease.

    更新日期:2019-11-01
  • The role of vitamin E in atherosclerosis.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-06-20
    Joanne M Upston,Leonard Kritharides,Roland Stocker

    Epidemiological and biochemical studies infer that oxidative processes, including the oxidation of low-density lipoprotein (LDL), are involved in atherosclerosis. Vitamin E has been the focus of several large supplemental studies of cardiovascular disease, yet its potential to attenuate or even prevent atherosclerosis has not been realised. The scientific rationale for vitamin E supplements protecting against atherosclerosis is based primarily on the oxidation theory of atherosclerosis, the assumption that vitamin E becomes depleted as disease progresses, and the expectation that vitamin E prevents the oxidation of LDL in vivo and atherogenic events linked to such oxidation. However, it is increasingly clear that the balance between vitamin E and other antioxidants may be crucial for in vivo antioxidant protection, that vitamin E is only minimally oxidised and not deficient in atherosclerotic lesions, and that vitamin E is not effective against two-electron oxidants that are increasingly implicated in both early and later stages of the disease. It also remains unclear as to whether oxidation plays a bystander or a casual role in atherosclerosis. This lack of knowledge may explain the ambivalence of vitamin E and other antioxidant supplementation in atherosclerosis.

    更新日期:2019-11-01
  • Comparison of the properties of prostaglandin H synthase-1 and -2.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-06-20
    Richard J Kulmacz,Wilfred A van der Donk,Ah-Lim Tsai

    Biosynthesis of prostanoid lipid signaling agents from arachidonic acid begins with prostaglandin H synthase (PGHS), a hemoprotein in the myeloperoxidase family. Vertebrates from humans to fish have two principal isoforms of PGHS, termed PGHS-1 and-2. These two isoforms are structurally quite similar, but they have very different pathophysiological roles and are regulated very differently at the level of catalysis. The focus of this review is on the structural and biochemical distinctions between PGHS-1 and-2, and how these differences relate to the functional divergence between the two isoforms.

    更新日期:2019-11-01
  • The chemical biology of branched-chain lipid metabolism.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-06-20
    Mridul Mukherji,Christopher J Schofield,Anthony S Wierzbicki,Gerbert A Jansen,Ronald J A Wanders,Matthew D Lloyd

    Mammalian metabolism of some lipids including 3-methyl and 2-methyl branched-chain fatty acids occurs within peroxisomes. Such lipids, including phytanic and pristanic acids, are commonly found within the human diet and may be derived from chlorophyll in plant extracts. Due to the presence of a methyl group at its beta-carbon, the well-characterised beta-oxidation pathway cannot degrade phytanic acid. Instead its alpha-methylene group is oxidatively excised to give pristanic acid, which can be metabolised by the beta-oxidation pathway. Many defects in the alpha-oxidation pathway result in an accumulation of phytanic acid, leading to neurological distress, deterioration of vision, deafness, loss of coordination and eventual death. Details of the alpha-oxidation pathway have only recently been elucidated, and considerable progress has been made in understanding the detailed enzymology of one of the oxidative steps within this pathway. This review summarises these recent advances and considers the roles and likely mechanisms of the enzymes within the alpha-oxidation pathway.

    更新日期:2019-11-01
  • Pleiotropic actions of sphingosine-1-phosphate.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-06-07
    Kenneth Watterson,Heidi Sankala,Sheldon Milstien,Sarah Spiegel

    Sphingosine-1-phosphate (SIP) is a bioactive sphingolipid metabolite that regulates diverse cellular responses including, growth, survival, cytoskeleton rearrangements and movement. SIP plays an important role during development, particularly in vascular maturation and has been implicated in pathophysiology of cancer, wound healing, and atherosclerosis. This review summarizes the evidence showing that signaling induced by SIP is complex and involves both intracellular and extracellular actions. The intracellular effects of SIP remain speculative awaiting the identification of specific targets whereas the extracellular effects of SIP are clearly mediated through the activation of five specific G protein coupled receptors, called S1P1-5. Recent studies demonstrate that intracellular generated SIP can act in a paracrine or autocrine manner to activate its cell surface receptors.

    更新日期:2019-11-01
  • 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-04-12
    Koji Uchida

    The onset of lipid peroxidation within cellular membranes is associated with changes in their physiochemical properties and with the impairment of enzymatic functions located in the membrane environment. There is increasing evidence that aldehydic molecules generated endogenously during the process of lipid peroidation are causally involved in most of the pathophysiological effects associated with oxidative stress in cells and tissues. 4-Hydroxy-2-nonenal (HNE), among them, is believed to be largely responsible for cytopathological effects observed during oxidative stree in vivo and has achieved the status of one of the best recognized and most studied of the cytotoxic products of lipid peroxidation. In the present review, I provide a comprehensive summary of HNE, as the product and mediator or oxidative stress.

    更新日期:2019-11-01
  • Structural and functional organization of the animal fatty acid synthase.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-04-12
    Stuart Smith,Andrzej Witkowski,Anil K Joshi

    The entire pathway of palmitate synthesis from malonyl-CoA in mammals is catalyzed by a single, homodimeric, multifunctional protein, the fatty acid synthase. Each subunit contains three N-terminal domains, the beta-ketoacyl synthase, malonyl/acetyl transferase and dehydrase separated by a structural core from four C-terminal domains, the enoyl reductase, beta-ketoacyl reductase, acyl carrier protein and thiosterase. The kinetics and specificities of the substrate loading reaction catalyzed by the malonyl/acetyl transferase, the condensation reaction catalyzed by beta-ketoacyl synthase and chain-terminating reaction catalyzed by the thioesterase ensure that intermediates do not leak off the enzyme, saturated chains exclusively are elongated and palmitate is released as the major product. Only in the fatty acid synthase dimer do the subunits adopt conformations that facilitate productive coupling of the individual reactions for fatty acid synthesis at the two acyl carrier protein centers. Introduction of a double tagging and dual affinity chromatographic procedure has permitted the engineering and isolation of heterodimeric fatty acid synthases carrying different mutations on each subunit. Characterization of these heterodimers, by activity assays and chemical cross-linking, has been exploited to map the functional topology of the protein. The results reveal that the two acyl carrier protein domains engage in substrate loading and condensation reactions catalyzed by the malonyl/acetyl transferase and beta-ketoacyl synthase domains of either subunit. In contrast, the reactions involved in processing of the beta-carbon atom, following each chain elongation step, together with the release of palmitate, are catalyzed by the cooperation of the acyl carrier protein with catalytic domains of the same subunit. These findings suggest a revised model for the fatty acid synthase in which the two polypeptides are oriented such that head-to-tail contacts are formed both between and within subunits.

    更新日期:2019-11-01
  • Selective mobilization of fatty acids from adipose tissue triacylglycerols.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-04-12
    Thierry Raclot

    Adipose tissue triacylglycerols represent the main storage of a wide spectrum of fatty acids differing by molecular structure. The release of individual fatty acids from adipose tissue is selective according to carbon chain length and unsaturation degree in vitro and in vivo in animal studies and also in humans. The mechanism of selective fatty acid mobilization from white fat cells is not known. Lipolysis is widely reported to work at a lipid-water interface where only small amounts of substrate are available. A preferential hydrolysis of a small triacylglycerol fraction enriched in certain triacylglycerol molecular species at the lipid-water interface and enzymological properties of hormone-sensitive lipase could explain the selective mobilization of fatty acids from fat cells. This selectivity could affect the individual fatty acid supply to tissues.

    更新日期:2019-11-01
  • AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-04-12
    Nandakumar Sambandam,Gary D Lopaschuk

    Myocardial ischemia is the leading cause of all cardiovascular deaths in North America. Myocardial ischemia is accompanied by profound changes in metabolism including alterations in glucose and fatty acid metabolism, increased uncoupling of glucose oxidation from glycolysis and accumulation of protons within the myocardium. These changes can contribute to a poor functional recovery of the heart. One key player in the ischemia-induced alteration in fatty acid and glucose metabolism is 5'AMP-activated protein kinase (AMPK). Accumulating evidence suggest that activation of AMPK during myocardial ischemia both increases glucose uptake and glycolysis while also increasing fatty acid oxidation during reperfusion. Gain-of-function mutations of AMPK in cardiac muscle may also be causally related to the development of hypertrophic cardiomyopathies. Therefore, a better understanding of role of AMPK in cardiac metabolism is necessary to appropriately modulate its activity as a potential therapeutic target in treating ischemia reperfusion injuries. This review attempts to update some of the recent findings that delineate various pathways through which AMPK regulates glucose and fatty acid metabolism in the ischemic myocardium.

    更新日期:2019-11-01
  • Antiphospholipid antibodies: discovery, definitions, detection and disease.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-04-12
    John A McIntyre,Dawn R Wagenknecht,W Page Faulk

    Antiphospholipid antibodies (aPL) are immunoglobulins of IgG, IgM and IgA isotypes that target phospholipid (PL) and/or PL-binding plasma proteins. Detection of aPL in the laboratory is done currently by both immunoassays and functional coagulation tests. Convention defines aPL specificity in immunoassays according to the particular PL substrate present, for example aPS represents antiphosphatidylserine antibodies. This may be technically incorrect inasmuch as a particular PL may be responsible for binding and highly concentrating a specific plasma protein, the latter then becomes the target for the aPL. The binding of beta(2)GP-I (apolipoprotein H) to the negatively charged PL, cardiolipin (CL) provides a good example of this circumstance. In contrast, aPL which specifically prolong coagulation times in in vitro are called lupus anticoagulants (LA). The precise PL target(s) of the aPL responsible for LA activities are unknown and often debated. The persistent finding of aPL in patients in association with abnormal blood clotting and a myriad of neurological, obstetrical and rheumatic disorders often compounded by autoimmune diseases has led to an established clinical diagnosis termed antiphospholipid syndrome (APS). The common denominator for these APS patients is the presence of circulating aPL on two or more occasions and the observation of events attributable to abnormal or accelerated blood clotting somewhere in vivo. The purpose of this review is to collect, collate, and consolidate information concerning aPL.

    更新日期:2019-11-01
  • The role of sterols in plant growth and development.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-04-12
    Hubert Schaller

    Sterols found in all eukaryotic organisms are membrane components which regulate the fluidity and the permeability of phospholipid bilayers. Certain sterols in minute amounts, such as campesterol in Arabidopsis thaliana, are precursors of oxidized steroids acting as growth hormones collectively named brassinosteroids. The crucial importance of brassinosteroids upon growth and development has been established through the study of a set of dwarf mutants affected in brassinosteroid synthesis or perception. Some of these dwarfs are, in fact, deficient in the final steps of sterol biosynthesis and their developmental phenotypes are primarily caused by a depletion in the sterol precursor for brassinosteroids. Recently, the characterization of genes encoding sterol biosynthetic enzymes and the isolation of novel plant lines affected in the expression of those genes, either by insertional or classical mutagenesis, overexpression or cosuppression, have shed new light on the involvement of sterols in biological processes such as embryonic development, cell and plant growth, and fertility, which will be presented and discussed in this review article.

    更新日期:2019-11-01
  • Biosynthesis of phosphatidylcholine in bacteria.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-01-28
    Christian Sohlenkamp,Isabel M López-Lara,Otto Geiger

    Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and can be synthesized by either of two pathways, the methylation pathway or the CDP-choline pathway. Many prokaryotes lack PC, but it can be found in significant amounts in membranes of rather diverse bacteria and based on genomic data, we estimate that more than 10% of all bacteria possess PC. Enzymatic methylation of phosphatidylethanolamine via the methylation pathway was thought to be the only biosynthetic pathway to yield PC in bacteria. However, a choline-dependent pathway for PC biosynthesis has been discovered in Sinorhizobium meliloti. In this pathway, PC synthase, condenses choline directly with CDP-diacylglyceride to form PC in one step. A number of symbiotic (Rhizobium leguminosarum, Mesorhizobium loti) and pathogenic (Agrobacterium tumefaciens, Brucella melitensis, Pseudomonas aeruginosa, Borrelia burgdorferi and Legionella pneumophila) bacteria seem to possess the PC synthase pathway and we suggest that the respective eukaryotic host functions as the provider of choline for this pathway. Pathogens entering their hosts through epithelia (Streptococcus pneumoniae, Haemophilus influenzae) require phosphocholine substitutions on their cell surface components that are biosynthetically also derived from choline supplied by the host. However, the incorporation of choline in these latter cases proceeds via choline phosphate and CDP-choline as intermediates. The occurrence of two intermediates in prokaryotes usually found as intermediates in the eukaryotic CDP-choline pathway for PC biosynthesis raises the question whether some bacteria might form PC via a CDP-choline pathway.

    更新日期:2019-11-01
  • Plasma platelet activating factor-acetylhydrolase (PAF-AH).
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-01-28
    Ken Karasawa,Ayako Harada,Noriko Satoh,Keizo Inoue,Morio Setaka

    The platelet-activating factor-acetylhydrolase (PAF-AH) is an enzyme which catalyzes the hydrolysis of acetyl ester at the sn-2 position of PAF. The family of PAF-AHs consists of two intracellular isoforms (Ib and II), and one secreted isoform (plasma). These PAF-AHs show different biochemical characteristics and molecular structures. Plasma PAF-AH and intracellular isoform, II degrade not only PAF but also oxidatively fragmented phospholipids with potent biological activities. Among these PAF-AHs, plasma PAF-AH has been the target of many clinical studies in inflammatory diseases, such as asthma, sepsis, and vascular diseases, because the plasma PAF-AH activity in the patients with these diseases is altered when compared with normal individuals. Finding a genetic deficiency in the plasma PAF-AH opened the gate in elucidating the protecting role of this enzyme in inflammatory diseases. The most common loss-of-function mutation, V279F, is found in more than 30% of Japanese subjects (4% homozygous, 27% heterozygous). This single nucleotide polymorphism in plasma PAF-AH and the resulting enzymatic deficiency is thought to be a genetic risk factor in various inflammatory diseases in Japanese subjects. Administration of recombinant plasma PAF-AH or transfer of the plasma PAF-AH gene improves pathology in animal models. Therefore, substitution of plasma PAF-AH would be an effective in the treatment of the patients with the inflammatory diseases and a novel clinical approach. In addition, the detection of polymorphisms in the plasma PAF-AH gene and abnormalities in enzyme activity would be beneficial in the diagnosis of the inflammatory diseases.

    更新日期:2019-11-01
  • Effects of HIV protease inhibitor therapy on lipid metabolism.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2003-01-28
    David Y Hui

    Highly active antiretroviral therapy, which includes a combination of protease inhibitors, is highly successful in controlling human immunodeficiency virus (HIV) infection and reducing the morbidity and mortality of autoimmune deficiency syndrome (AIDS). However, the benefits of HIV protease inhibitors are compromised by numerous undesirable side effects. These include peripheral fat wasting and excessive central fat deposition (lipodystrophy), overt hyperlipidemia, and insulin resistance. The mechanism associated with protease inhibitor-induced metabolic abnormalities is multifactorial. One major effect of the protease inhibitor is its suppression of the breakdown of the nuclear form of sterol regulatory element binding proteins (nSREBP) in the liver and adipose tissues. Hepatic accumulation of nSREBP results in increased fatty acid and cholesterol biosynthesis, whereas nSREBP accumulation in adipose tissue causes lipodystrophy, reduces leptin expression, and promotes insulin resistance. The HIV protease inhibitors also suppress proteasome-mediated breakdown of nascent apolipoprotein (apo) B, thus resulting in the overproduction and secretion of triglyceride-rich lipoproteins. Finally, protease inhibitor also suppresses the inhibition of the glucose transporter GLUT-4 activity in adipose and muscle. This latter effect also contributes directly to insulin resistance and diabetes. These adverse effects need to be alleviated for long-term use of protease inhibitor therapy in treatment of HIV infection.

    更新日期:2019-11-01
  • Biosynthesis and secretion of plant cuticular wax.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-12-07
    L Kunst,A L Samuels

    The cuticle covers the aerial portions of land plants. It consists of amorphous intracuticular wax embedded in cutin polymer, and epicuticular wax crystalloids that coat the outer plant surface and impart a whitish appearance. Cuticular wax is mainly composed of long-chain aliphatic compounds derived from very long chain fatty acids. Wax biosynthesis begins with fatty acid synthesis in the plastid. Here we focus on fatty acid elongation (FAE) to very long chains (C24-C34), and the subsequent processing of these elongated products into alkanes, secondary alcohols, ketones, primary alcohols and wax esters. The identity of the gene products involved in these processes is starting to emerge. Other areas of this field remain enigmatic. For example, it is not known how the hydrophobic wax components are moved intracellularly, how they are exported out of the cell, or translocated through the hydrophilic cell wall. Two hypotheses are presented for intracellular wax transport: direct transfer of lipids from the endoplasmic reticulum to the plasma membrane, and Golgi mediated exocytosis. The potential roles of ABC transporters and non-specific lipid transfer proteins in wax export are also discussed. Biochemical-genetic and genomic approaches in Arabidopsis thaliana promise to be particularly useful in identifying and characterizing gene products involved in wax biosynthesis, secretion and function. The current review will, therefore, focus on Arabidopsis as a model for studying these processes.

    更新日期:2019-11-01
  • Squalene epoxidase as hypocholesterolemic drug target revisited.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-12-07
    Anita Chugh,Abhijit Ray,Jung B Gupta

    Therapeutic success of statins has distinctly established inhibition of de novo hepatic cholesterol synthesis as an effective approach to lower plasma LDL-cholesterol, the major risk factor for atherosclerosis and coronary heart disease. Statins inhibit HMG CoA reductase, a rate limiting enzyme which catalyses conversion of HMG CoA to mevalonic acid. However, in this process statins also inhibit the synthesis of several non-sterols e.g. dolichols and ubiquinone, which are implicated in side effects observed with statins. This prompted many major pharmaceutical companies in 1990s to target selective cholesterol synthesis beyond farnesyl pyrophosphate. The enzymes squalene synthetase, squalene epoxidase and oxidosqualene cyclase were identified as potential targets. Though inhibitors of these enzymes have been developed, till date no compound has been reported to have entered clinical trials. We evaluated the literature to understand merits and demerits of pursuing squalene epoxidase as a target for hypocholesterolemic drug development. Squalene epoxidase catalyses the conversion of squalene to 2,3-oxidosqualene. Although it has been extensively exploited for antifungal drug development, it has received little attention as a target for hypocholesterolemic drug design. This enzyme though recognized in the early 1970s was cloned 25 years later. This enzyme is an attractive step for pharmacotherapeutic intervention as it is the secondary rate limiting enzyme and blocking cholesterol synthesis at this step may result in accumulation of only squalene which is known to be stable and non toxic. Synthesis of several potent, orally bioavailable inhibitors of squalene epoxidase has been reported from Yamonuchi, Pierre Fabre and Banyu pharmaceuticals. Preclinical studies with these inhibitors have clearly demonstrated the potential of squalene epoxidase inhibitors as hypocholesterolemic agents. Hypochloesterolemic therapy is intended for prolonged duration and safety is an important determinant in clinical success. Lack of clinical trials, despite demonstrated preclinical efficacy by oral route, prompted us to evaluate safety concerns with squalene epoxidase inhibitors. In dogs, NB-598, a potent competitive squalene epoxidase inhibitor has been reported to exhibit signs of dermatitis like toxicity which has been attributed by some reviewers to accumulation of squalene in skin cells. Tellurium, a non-competitive inhibitor of squalene epoxidase has been associated with neuropathy in weanling rats. On the other hand, increased plasma levels of squalene in animals and humans (such as occurring subsequent to dietary olive oil or squalene administration) are safe and associated with beneficial effect such as chemoprevention and hypocholesterolemic activity. In our view, high circulating levels of squalene epoxidase inhibitor may be responsible for dermatitis and neuropathy. Competitive inhibition and pharmacokinetic profile minimizing circulating plasma levels (e.g. by hepatic sequestration and high first pass metabolism) could be important determinants in circumventing safety concerns of squalene epoxidase inhibitors. Recently, cholesterol-lowering effect of green tea has been attributed to potent squalene epoxidase inhibition, which can be consumed in much higher doses without toxicological effect. These facts strengthen optimism for developing clinically safe squalene epoxidase inhibitors. Put in perspective squalene epoxidase appears to be undervalued target which merits attention for development of better hypocholesterolemic drugs.

    更新日期:2019-11-01
  • Structure of the skin barrier and its modulation by vesicular formulations.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-12-07
    Joke A Bouwstra,P Loan Honeywell-Nguyen,Gert S Gooris,Maria Ponec

    The natural function of the skin is to protect the body from unwanted influences from the environment. The main barrier of the skin is located in the outermost layer of the skin, the stratum corneum. Since the lipids regions in the stratum corneum form the only continuous structure, substances applied onto the skin always have to pass these regions. For this reason the organization in the lipid domains is considered to be very important for the skin barrier function. Due to the exceptional stratum corneum lipid composition, with long chain ceramides, free fatty acids and cholesterol as main lipid classes, the lipid phase behavior is different from that of other biological membranes. In stratum corneum crystalline phases are predominantly present, but most probably a subpopulation of lipids forms a liquid phase. Both the crystalline nature and the presence of a 13 nm lamellar phase are considered to be crucial for the skin barrier function. Since it is impossible to selectively extract individual lipid classes from the stratum corneum, the lipid organization has been studied in vitro using isolated lipid mixtures. These studies revealed that mixtures prepared with isolated stratum corneum lipids mimic to a high extent stratum corneum lipid phase behavior. This indicates that proteins do not play an important role in the stratum corneum lipid phase behavior. Furthermore, it was noticed that mixtures prepared only with ceramides and cholesterol already form the 13 nm lamellar phase. In the presence of free fatty acids the lattice density of the structure increases. In stratum corneum the ceramide fraction consists of various ceramide subclasses and the formation of the 13 nm lamellar phase is also affected by the ceramide composition. Particularly the presence of ceramide 1 is crucial. Based on these findings a molecular model has recently been proposed for the organization of the 13 nm lamellar phase, referred to as "the sandwich model", in which crystalline and liquid domains coexist. The major problem for topical drug delivery is the low diffusion rate of drugs across the stratum corneum. Therefore, several methods have been assessed to increase the permeation rate of drugs temporarily and locally. One of the approaches is the application of drugs in formulations containing vesicles. In order to unravel the mechanisms involved in increasing the drug transport across the skin, information on the effect of vesicles on drug permeation rate, the permeation pathway and perturbations of the skin ultrastructure is of importance. In the second part of this paper the possible interactions between vesicles and skin are described, focusing on differences between the effects of gel-state vesicles, liquid-state vesicles and elastic vesicles.

    更新日期:2019-11-01
  • The biosynthesis of mycolic acids by Mycobacteria: current and alternative hypotheses.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-08-10
    Cécile Asselineau,Jean Asselineau,Gilbert Lanéelle,Marie-Antoinette Lanéelle

    Experimental observations, accumulated during several decades, have allowed an overall scheme for the biosynthesis of the mycolic acids, which are very long chain fatty acids of Mycobacteria to be proposed. But, in almost every step, several hypotheses are compatible with the experimental results, leading to variations of the overall scheme. The aim of this review is to point to some additional possibilities. It is generally assumed that the classical elongation process of fatty acid synthesis produces two long chains, the condensation of which leads to the direct precursors of mycolic acids. But three condensations of four fatty acids, usually synthesized by Mycobacteria, is another hypothesis that could be considered. In the first hypothesis, some methyl or methylene substituents or oxygenated functions are added to the double bonds of an unsaturated precursor, whereas in the second hypothesis, the methylations could help in the building of very long aliphatic chains, and determine the location of double bonds or ramifications. The hypothetical coexistence of two pathways for mycolate biosynthesis is discussed.

    更新日期:2019-11-01
  • Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-08-10
    Robert A Moreau,Bruce D Whitaker,Kevin B Hicks

    Phytosterols (plant sterols) are triterpenes that are important structural components of plant membranes, and free phytosterols serve to stabilize phospholipid bilayers in plant cell membranes just as cholesterol does in animal cell membranes. Most phytosterols contain 28 or 29 carbons and one or two carbon-carbon double bonds, typically one in the sterol nucleus and sometimes a second in the alkyl side chain. Phytostanols are a fully-saturated subgroup of phytosterols (contain no double bonds). Phytostanols occur in trace levels in many plant species and they occur in high levels in tissues of only in a few cereal species. Phytosterols can be converted to phytostanols by chemical hydrogenation. More than 200 different types of phytosterols have been reported in plant species. In addition to the free form, phytosterols occur as four types of "conjugates," in which the 3beta-OH group is esterified to a fatty acid or a hydroxycinnamic acid, or glycosylated with a hexose (usually glucose) or a 6-fatty-acyl hexose. The most popular methods for phytosterol analysis involve hydrolysis of the esters (and sometimes the glycosides) and capillary GLC of the total phytosterols, either in the free form or as TMS or acetylated derivatives. Several alternative methods have been reported for analysis of free phytosterols and intact phytosteryl conjugates. Phytosterols and phytostanols have received much attention in the last five years because of their cholesterol-lowering properties. Early phytosterol-enriched products contained free phytosterols and relatively large dosages were required to significantly lower serum cholesterol. In the last several years two spreads, one containing phytostanyl fatty-acid esters and the other phytosteryl fatty-acid esters, have been commercialized and were shown to significantly lower serum cholesterol at dosages of 1-3 g per day. The popularity of these products has caused the medical and biochemical community to focus much attention on phytosterols and consequently research activity on phytosterols has increased dramatically.

    更新日期:2019-11-01
  • New advances in the chemistry of methoxylated lipids.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-08-10
    N M Carballeira

    Methoxylated lipids have been reviewed emphasizing the alkylglycerol ethers and fatty acids bearing the methoxy group in the alkyl chain. The literature on methoxylated lipids and their derivatives has been divided into four main groups, namely 2-methoxylated alkyl glycerols, omega-methoxylated fatty acids, mid-chain methoxylated fatty acids, and alpha-methoxylated fatty acids. The natural occurrence, biological activity, and synthesis of this interesting group of lipids are discussed. Most of these compounds have been isolated from either bacterial or marine sources, but others are mainly of synthetic origin. Among the interesting biological activities displayed by these compounds the most important are antibacterial, antifungal, antitumor, and antiviral.

    更新日期:2019-11-01
  • Multi-subunit acetyl-CoA carboxylases.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-07-18
    John E Cronan,Grover L Waldrop

    Acetyl-CoA carboxylase (ACC) catalyses the first committed step of fatty acid synthesis, the carboxylation of acetyl-CoA to malonyl-CoA. Two physically distinct types of enzymes are found in nature. Bacterial and most plant chloroplasts contain a multi-subunit ACC (MS-ACC) enzyme that is readily dissociated into its component proteins. Mammals, fungi, and plant cytosols contain the second type of ACC, a single large multifunctional polypeptide. This review will focus on the structures, regulation, and enzymatic mechanisms of the bacterial and plant MS-ACCs.

    更新日期:2019-11-01
  • A lipid based depot (DepoFoam technology) for sustained release drug delivery.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-07-18
    Sankaram Mantripragada

    Encapsulation of drugs into multivesicular liposomes (DepoFoam) offers a novel approach to sustained-release drug delivery. While encapsulation of drugs into unilamellar and multilamellar liposomes, and complexation of drugs with lipids, resulted in products with better performance over a period lasting several hours to a few days after intravascular administration, DepoFoam-encapsulation has been shown to result in sustained-release lasting over several days to weeks after non-vascular administration. The routes of administration most viable for delivery of drugs via DepoFoam formulations include intrathecal, epidural, subcutaneous, intramuscular, intra-atricular, and intraocular. DepoFoam particles are distinguished structurally from unilamellar vesicles, multilamellar vesicles, and neosomes in that each particle comprises a set of closely packed non-concentric vesicles. The particles are tens of microns in diameter and have large trapped volume, thereby affording delivery of large quantities of drugs in the encapsulated form in a small volume of injection. A number of methods based on a manipulation of the lipid and aqueous composition can be used to control the rate of sustained-release from a few days to several weeks.

    更新日期:2019-11-01
  • Central role of peroxisomes in isoprenoid biosynthesis.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-07-18
    Werner J Kovacs,Lisa M Olivier,Skaidrite K Krisans

    Peroxisomes contain enzymes catalyzing a number of indispensable metabolic functions mainly related to lipid metabolism. The importance of peroxisomes in man is stressed by the existence of genetic disorders in which the biogenesis of the organelle is defective, leading to complex developmental and metabolic phenotypes. The purpose of this review is to emphasize some of the recent findings related to the localization of cholesterol biosynthetic enzymes in peroxisomes and to discuss the impairment of cholesterol biosynthesis in peroxisomal deficiency diseases.

    更新日期:2019-11-01
  • Natural halogenated fatty acids: their analogues and derivatives.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-04-18
    Valery M Dembitsky,Morris Srebnik

    A comprehensive survey has been made of all fatty acids containing halogen atoms covalently bonded to carbon and which are deemed as naturally occurring. Generally thought to be minor components produced by many different organisms, these interesting compounds now number more than 300. Recent research, especially in the marine area, indicates this number will increase in the future. Sources of halogenated fatty acids include microorganisms, algae, marine invertebrates, and higher plants and some animals. Their possible biological significance has also been discussed

    更新日期:2019-11-01
  • The mechanism of action of antioxidants against lipoprotein peroxidation, evaluation based on kinetic experiments.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-04-18
    Ilya Pinchuk,Dov Lichtenberg

    Peroxidation of blood lipoproteins is regarded as a key event in the development of atherosclerosis. Hence, attenuation of the oxidative modification of lipoproteins by natural and synthetic antioxidants in vivo is considered a possible way of prevention of cardiovascular disorders. The assessment of the susceptibility of lipoproteins to oxidation is commonly based on in vitro oxidation experiments. Monitoring of oxidation provides the kinetic profile characteristic for the given lipoprotein preparation. The kinetic profile of peroxidation is characterized by three major parameters: the lag preceding rapid oxidation, the maximal rate of oxidation (V(max)) and the maximal accumulation of oxidation products (OD(max)). Addition of antioxidants alters this pattern, affecting the kinetic parameters of oxidation. In particular, antioxidants may prolong the lag and/or decrease the V(max) and/or decrease the OD(max). Such specific variation of the set of kinetic parameters may provide important information on the mechanism of the inhibitory action of a given antioxidant (scavenging free radicals, metal-binding or other mechanisms). Numerous natural and synthetic compounds were reported to inhibit oxidation of lipoproteins. Based on the analysis of reported effects and theoretical considerations, we propose a simple protocol that relates the kinetic effects of a given antioxidant to the mechanism of its action.

    更新日期:2019-11-01
  • Mutants of Arabidopsis reveal many roles for membrane lipids.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-01-30
    James G Wallis,John Browse

    Polyunsaturated acyl lipids constitute approximately 50% of the hydrophobic membrane barriers that delineate the compartments of cells. The composition of these lipids is critically important for many membrane functions and, thus, for proper growth and development of all living organisms. In the model plant Arabidopsis, the isolation of mutants with altered lipid compositions has facilitated biochemical and molecular approaches to understanding lipid metabolism and membrane biogenesis. Just as importantly, the availability of a series of plant lines with specific changes in membrane lipids have provided a new resource to study the structural and adaptive roles of lipids. Now, the sequencing of the Arabidopsis genome, and the development of reverse-genetics approaches provide the tools needed to make additional discoveries about the relationships between lipid structure and membrane function in plant cells.

    更新日期:2019-11-01
  • In vitro studies on the relationship between polyunsaturated fatty acids and cancer: tumour or tissue specific effects?
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-01-30
    Christine P Diggle

    In vitro cell culture experiments have lead to the consensus in the literature that certain PUFAs have a selective cytotoxic or anti-proliferative effect on tumour cells and a minimal, or no effect on normal cells. Re-examination of key publications showed that when normal cells were used for comparison, they were generally not from the same cell, tissue, or species type as the tumour cells. Recently, investigations have included more appropriate normal control cells, and though tumour specific cytotoxic/anti-proliferative PUFA effects are found in some cell types, in others the normal cells are more sensitive. Cell type differences were found in the relative ability of individual PUFAs to act. However, within a cell type differences in susceptibility were influenced by grade and stage of tumour, immortalisation and tumourigenic status, cell culture media and cell plating density. Together these results suggest that the consensus is not valid, and that susceptibility to PUFA is cell type specific, and alters during neoplastic progression. Furthermore, the cytotoxic/anti-proliferative effect induced by both n-3 and n-6 PUFAs on a wide variety of cell types, associated with an increase in lipid peroxidation in vitro, cannot account for the in vivo data on the relationship between dietary fat and certain cancers. However, the effects of PUFAs and their metabolites on cell signalling pathways may explain the in vivo data.

    更新日期:2019-11-01
  • Control of mitochondrial beta-oxidation flux.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-01-30
    Simon Eaton

    The control of mitochondrial beta-oxidation, including the delivery of acyl moieties from the plasma membrane to the mitochondrion, is reviewed. Control of beta-oxidation flux appears to be largely at the level of entry of acyl groups to mitochondria, but is also dependent on substrate supply. CPTI has much of the control of hepatic beta-oxidation flux, and probably exerts high control in intact muscle because of the high concentration of malonyl-CoA in vivo. beta-Oxidation flux can also be controlled by the redox state of NAD/NADH and ETF/ETFH(2). Control by [acetyl-CoA]/[CoASH] may also be significant, but it is probably via export of acyl groups by carnitine acylcarnitine translocase and CPT II rather than via accumulation of 3-ketoacyl-CoA esters. The sharing of control between CPTI and other enzymes allows for flexible regulation of metabolism and the ability to rapidly adapt beta-oxidation flux to differing requirements in different tissues.

    更新日期:2019-11-01
  • Carbon flux and fatty acid synthesis in plants.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-01-05
    Stephen Rawsthorne

    The de novo synthesis of fatty acids in plants occurs in the plastids through the activity of fatty acid synthetase. The synthesis of the malonyl-coenzyme A that is required for acyl-chain elongation requires the import of metabolites from the cytosol and their subsequent metabolism. Early studies had implicated acetate as the carbon source for plastidial fatty acid synthesis but more recent experiments have provided data that argue against this. A range of cytosolic metabolites including glucose 6-phosphate, malate, phosphoenolpyruvate and pyruvate support high rates of fatty acid synthesis by isolated plastids, the relative utilisation of which depends upon the plant species and the organ from which the plastids are isolated. The import of these metabolites occurs via specific transporters on the plastid envelope and recent advances in the understanding of the role of these transporters are discussed. Chloroplasts are able to generate the reducing power and ATP required for fatty acid synthesis by capture of light energy in the reactions of photosynthetic electron transport. Regulation of chloroplast fatty acid synthesis is mediated by the response of acetyl-CoA carboxylase to the redox state of the plastid, which ensures that the carbon metabolism is linked to the energy status. The regulation of fatty acid synthesis in plastids of heterotrophic cells is much less well understood and is of particular interest in the tissues that accumulate large amounts of the storage oil, triacylglycerol. In these heterotrophic cells the plastids import ATP and oxidise imported carbon sources to produce the required reducing power. The sequencing of the genome of Arabidopsis thaliana has now enabled a number of aspects of plant fatty acid synthesis to be re-addressed, particularly those areas in which in vitro biochemical analysis had provided equivocal answers. Examples of such aspects and future opportunities for our understanding of plant fatty acid synthesis are presented and discussed.

    更新日期:2019-11-01
  • Pathways of straight and branched chain fatty acid catabolism in higher plants.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-01-05
    Ian A Graham,Peter J Eastmond

    Significant advances in our knowledge of fatty acid breakdown in plants have been made since the subject was last comprehensively reviewed in the early 1990s. Many of the genes encoding the enzymes of peroxisomal beta-oxidation of straight chain fatty acids have now been identified. Biochemical genetic approaches in the model plant, Arabidopsis thaliana, have been particularly useful not only in the identification and functional characterisation of genes involved in fatty acid beta-oxidation but also in establishing the role of beta-oxidation at different stages in plant development. Advances in our understanding of branched chain amino acid catabolism have provided convincing evidence that mitochondria play an important role in this process. This work is discussed in the context of the long running debate on the sub-cellular localisation of fatty acid beta-oxidation in plants. A significant aspect of this review is that it provides the opportunity to present a comprehensive analysis of the complete Arabidopsis genome sequence for each of the different gene families that are known to be involved in beta-, alpha-, and omega-oxidation of fatty acids in plants. Inevitably, this increase in information, as well as providing many answers also raises many new intriguing questions, particularly as regards the regulation and physiological role of fatty acid catabolism throughout the higher plant life cycle.

    更新日期:2019-11-01
  • Polyhydroxyalknoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-01-05
    Yves Poirier

    Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyacids naturally synthesized in bacteria as a carbon reserve. PHAs have properties of biodegradable thermoplastics and elastomers and their synthesis in crop plants is seen as an attractive system for the sustained production of large amounts of polymers at low cost. A variety of PHAs having different physical properties have now been synthesized in a number of transgenic plants, including Arabidopsis thaliana, rape and corn. This has been accomplished through the creation of novel metabolic pathways either in the cytoplasm, plastid or peroxisome of plant cells. Beyond its impact in biotechnology, PHA production in plants can also be used to study some fundamental aspects of plant metabolism. Synthesis of PHA can be used both as an indicator and a modulator of the carbon flux to pathways competing for common substrates, such as acetyl-coenzyme A in fatty acid biosynthesis or 3-hydroxyacyl-coenzyme A in fatty acid degradation. Synthesis of PHAs in plant peroxisome has been used to demonstrate changes in the flux of fatty acids to the beta-oxidation cycle in transgenic plants and mutants affected in lipid biosynthesis, as well as to study the pathway of degradation of unusual fatty acids.

    更新日期:2019-11-01
  • The role Acyl-CoA thioesterases play in mediating intracellular lipid metabolism.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2002-01-05
    Mary C Hunt,Stefan E H Alexson

    Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. These enzymes are localized in almost all cellular compartments such as endoplasmic reticulum, cytosol, mitochondria and peroxisomes. Acyl-CoA thioesterases are highly regulated by peroxisome proliferator-activated receptors (PPARs), and other nutritional factors, which has led to the conclusion that they are involved in lipid metabolism. Although the physiological functions for these enzymes are not yet fully understood, recent cloning and more in-depth characterization of acyl-CoA thioesterases has assisted in discussion of putative functions for specific enzymes. Here we review the acyl-CoA thioesterases characterized to date and also address the diverse putative functions for these enzymes, such as in ligand supply for nuclear receptors, and regulation and termination of fatty acid oxidation in mitochondria and peroxisomes.

    更新日期:2019-11-01
  • Cholesterol interactions with phospholipids in membranes.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2001-11-06
    Henna Ohvo-Rekilä,Bodil Ramstedt,Petra Leppimäki,J Peter Slotte

    Mammalian cell membranes are composed of a complex array of glycerophospholipids and sphingolipids that vary in head-group and acyl-chain composition. In a given cell type, membrane phospholipids may amount to more than a thousand molecular species. The complexity of phospholipid and sphingolipid structures is most likely a consequence of their diverse roles in membrane dynamics, protein regulation, signal transduction and secretion. This review is mainly focused on two of the major classes of membrane phospholipids in eukaryotic organisms, sphingomyelins and phosphatidylcholines. These phospholipid classes constitute more than 50% of membrane phospholipids. Cholesterol is most likely to associate with these lipids in the membranes of the cells. We discuss the synthesis and distribution in the cell of these lipids, how they are believed to interact with each other, and what cellular consequences such interactions may have. We also include a discussion about findings in the recent literature regarding cholesterol/phospholipid interactions in model membrane systems. Finally, we look at the recent trends in computer and molecular dynamics simulations regarding phospholipid and cholesterol/phospholipid behavior in bilayer membranes.

    更新日期:2019-11-01
  • Human immunodeficiency virus and host cell lipids. Interesting pathways in research for a new HIV therapy.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2001-11-06
    Jeanine Raulin

    It has been reported in the literature that biological membranes arising from HIV-induced cell fusion, as well as syncytium formation between infected and non-infected cells and those involved in transduction, viral DNA nuclear import and virion budding from the host cell, are all made of proteins, a phospholipid (P) bilayer and cholesterol (C). However, the P/C molar ratio is higher in the retroviral envelope than in the plasma membrane where they originate, and higher than in the nuclear envelope. Mechanisms are described which elucidate this puzzling fact, as well as cholesterol-dependent leakage and pore formation during cell fusion. Fatty acylation of viral and host cell proteins is required to direct them to membranes. Detergent-insoluble microdomains enriched in cholesterol and sphingolipids, termed either DIGs (detergent-insoluble glycolipid-enriched complexes), DRMs (detergent resistant membranes), TIFFs (Triton-insoluble floating fractions) or GEMs (glycolipid-enriched membranes), function as platforms for attachment of proteins in the process of signal transduction. HIV-SUgp120 (HIV-surface glycoprotein), T-cell receptor (TCR)-CD4+ and co-receptors promote aggregation of these lipid "rafts" which concentrate the Src family tyrosine kinases SFKs (PTK, Lyn, Fyn, Lck), GPI (glycosyl phosphatidylinositol)-anchored proteins, and phosphatidylinositol kinases PI(3)K and PI(4)K, inducing cell signalling. HIV-SUgp120 transduces the activation signal and provokes the formation of polyunsaturated fatty acid (PUFA) metabolites, i.e. the prostaglandin PGE2 suppressor of immune function and inhibitor of cytotoxic T-lymphocyte (CTL) proliferation, while PGB2 activates SFKs and increases mRNA expression, as well as NFkappaB (nuclear transcription factor) translocation to nucleus. HIV nuclear import, DNA integration, chromatin template capacity may be mediated by the lipid environment. The lipid-enriched microdomains from which HIV-1 buds, may explain the high level of cholesterol and sphingolipids in the viral envelope, since host cell rafts become a viral coat. HIV-1 infection induces alteration of cellular lipids: (1) shift in phospholipid synthesis to neutral lipids associated with the viral load, polyunsaturated fatty acid (PUFA) peroxidation, and n-3 deficiency with deregulation of cytokines and PPAR-gamma (peroxisome proliferator-activated receptor-gamma), and (2) alloimmune phospholipid antibody production in which antibodies to cardiolipin and to phosphatidylserine are most prevalent, due to the destruction of mitochondrial membranes and progression of lymphocyte apoptosis. The current highly active anti-retroviral therapy, including both viral reverse transcriptase (RT) inhibitors (NRTIs and NNRTIs, nucleoside and non-nucleoside RT inhibitors) and protease inhibitors (PIs), induces side-effects in the long term. Lipodystrophy (LD), consists of peripheral lipoatrophy associated with central fat accumulation (called "crixbelly" and "buffalo hump"), insulin resistance, elevation of very low density lipoproteins, decrease in high density lipoproteins and inhibition of adipocyte differentiation. LD syndrome appears to be induced by PIs that inhibit GLUT4, glucose transporter isoform, and by NRTIs which provoke mitochondrial failure. New therapeutic strategies assessed: (1) inhibition of the viral integrase and/or HIV entry into cells through natural products or their derivatives, (2) inhibition of HIV-1 entry into macrophages pretreated with Gram-negative bacterial lipopolysaccharide, (3) vaccination with multi-lipopeptides, i.e. sequences of HIV-1 peptides with CD4+ T-cell and B-cell epitopes, modified by adding a lipid tail to one end, which produce HIV-specific CTL and multispecific immune responses in most of the vaccinated subjects and (4) stimulation of antiviral drug activity with lipid-prodrugs targeting viral RT, polymerase, integrase, or aspartyl-protease.

    更新日期:2019-11-01
  • 更新日期:2019-11-01
  • Cholesterol and other membrane active sterols: from membrane evolution to "rafts".
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2001-11-06
    Y Barenholz

    The appearance of "membrane-active sterols" in biological membranes of eukaryocytes is one of the major steps in membrane evolution. This is exemplified best by membrane-active sterols of mammalia. The effect of membrane-active sterols on controlling membrane permeability by reducing average "fluidity" and free volume is well established. Recently it became clear that cholesterol also has a key role in the lateral organization of membranes and free volume distribution. The latter two parameters seem to be involved in controlling membrane protein activity and "raft" formation. Such an effect allows for the fine tuning of membrane lipid composition, organization/dynamics, and function.

    更新日期:2019-11-01
  • Gene structure, intracellular localization, and functional roles of sterol carrier protein-2.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2001-10-10
    A M Gallegos,B P Atshaves,S M Storey,O Starodub,A D Petrescu,H Huang,A L McIntosh,G G Martin,H Chao,A B Kier,F Schroeder

    Since its discovery three decades ago, sterol carrier protein-2 (SCP-2) has remained a fascinating protein whose physiological function in lipid metabolism remains an enigma. Its multiple proposed functions arise from its complex gene structure, post-translational processing, intracellular localization, and ligand specificity. The SCP-2 gene has two initiation sites coding for proteins that share a common 13 kDa SCP-2 C-terminus: (1) One site codes for 58 kDa SCP-x which is partially post-translationally cleaved to 13 kDa SCP-2 and a 45 kDa protein. (2) A second site codes for 15 kDa pro-SCP-2 which is completely post-translationally cleaved to 13 kDa SCP-2. Very little is yet known regarding how the relative proportions of the two transcripts are regulated. Although all three proteins contain a C-terminal SKL peroxisomal targeting sequence, it is unclear why all three proteins are not exclusively localized in peroxisomes. However, the recent demonstration that the SCP-2 N-terminal presequence in pro-SCP-2 dramatically modulated the intracellular targeting coded by the C-terminal peroxisomal targeting sequence may account for the observation that as much as half of total SCP-2 is localized outside the peroxisome. The tertiary and secondary structure of the 13 kDa SCP-2, but not that of 15 kDa pro-SCP-2 and 58 kDa SCP-x, are now resolved. Increasing evidence suggests that the 58 kDa SCP-x and 45 kDa proteins are peroxisomal 3-ketoacyl-CoA-thiolases involved in the oxidation of branched chain fatty acids. Since 15 kDa pro-SCP-2 is post-translationally completely cleaved to 13 kDa SCP-2, relatively little attention has been focused on this protein. Finally, although the 13 kDa SCP-2 is the most studied of these proteins, because it exhibits diversity of its ligand partners (fatty acids, fatty acyl CoAs, cholesterol, phospholipids), new potential physiological function(s) are still being proposed and questions regarding potential compensation by other proteins with overlapping specificity are only beginning to be resolved.

    更新日期:2019-11-01
  • Lipid biosynthesis as a target for antibacterial agents.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2001-10-10
    R J Heath,S W White,C O Rock

    Fatty acid biosynthesis, the first stage in membrane lipid biogenesis, is catalyzed in most bacteria by a series of small, soluble proteins that are each encoded by a discrete gene (Fig. 1; Table 1). This arrangement is termed the type II fatty acid synthase (FAS) system and contrasts sharply with the type I FAS of eukaryotes which is a dimer of a single large, multifunctional polypeptide. Thus, the bacterial pathway offers several unique sites for selective inhibition by chemotherapeutic agents. The site of action of isoniazid, used in the treatment of tuberculosis for 50 years, and the consumer antimicrobial agent triclosan were revealed recently to be the enoyl-ACP reductase of the type II FAS. The fungal metabolites, cerulenin and thiolactomycin, target the condensing enzymes of the bacterial pathway while the dehydratase/isomerase is inhibited by a synthetic acetylenic substrate analogue. Transfer of fatty acids to the membrane has also been inhibited via interference with the first acyltransferase step, while a new class of drugs targets lipid A synthesis. This review will summarize the data generated on these inhibitors to date, and examine where additional efforts will be required to develop new chemotherapeutics to help combat microbial infections.

    更新日期:2019-11-01
  • Human metabolism of phytanic acid and pristanic acid.
    Prog. Lipid. Res. (IF 12.540) Pub Date : 2001-10-10
    N M Verhoeven,C Jakobs

    Phytanic acid is a methyl-branched fatty acid present in the human diet. Due to its structure, degradation by beta-oxidation is impossible. Instead, phytanic acid is oxidized by alpha-oxidation, yielding pristanic acid. Despite many efforts to elucidate the alpha-oxidation pathway, it remained unknown for more than 30 years. In recent years, the mechanism of alpha-oxidation as well as the enzymes involved in the process have been elucidated. The process was found to involve activation, followed by hydroxylase, lyase and dehydrogenase reactions. Part, if not all of the reactions were found to take place in peroxisomes. The final product of phytanic acid alpha-oxidation is pristanic acid. This fatty acid is degraded by peroxisomal beta-oxidation. After 3 steps of beta-oxidation in the peroxisome, the product is esterified to carnitine and shuttled to the mitochondrion for further oxidation. Several inborn errors with one or more deficiencies in the phytanic acid and pristanic degradation have been described. The clinical expressions of these disorders are heterogeneous, and vary between severe neonatal and often fatal symptoms and milder syndromes with late onset. Biochemically, these disorders are characterized by accumulation of phytanic and/or pristanic acid in tissues and body fluids. Several of the inborn errors involving phytanic acid and/or pristanic acid metabolism have been characterized on the molecular level.

    更新日期:2019-11-01
Contents have been reproduced by permission of the publishers.
导出
全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
中国科学院微生物研究所潘国辉
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug