-
A memristor-based adaptive neuromorphic decoder for brain–computer interfaces Nat. Electron. (IF 33.7) Pub Date : 2025-02-17 Zhengwu Liu, Jie Mei, Jianshi Tang, Minpeng Xu, Bin Gao, Kun Wang, Sanchuang Ding, Qi Liu, Qi Qin, Weize Chen, Yue Xi, Yijun Li, Peng Yao, Han Zhao, Ngai Wong, He Qian, Bo Hong, Tzyy-Ping Jung, Dong Ming, Huaqiang Wu
-
Video processing on a self-calibrating analogue memristor array Nat. Electron. (IF 33.7) Pub Date : 2025-02-11 Muhammad Umair Khan, Baker Mohammad
-
The quantum limits of contact resistance and ballistic transport in 2D transistors Nat. Electron. (IF 33.7) Pub Date : 2025-02-07 Deji Akinwande, Chandan Biswas, Debdeep Jena
-
Conductive-bridge interlayer contacts for two-dimensional optoelectronic devices Nat. Electron. (IF 33.7) Pub Date : 2025-02-05 Jisu Jang, Jung Pyo Hong, Sang-Jun Kim, Jongtae Ahn, Byoung-Soo Yu, Jaewon Han, Kihyun Lee, Aelim Ha, Eunki Yoon, Wonsik Kim, Suyeon Jo, Hyun Woo Ko, Seon Kyu Yoon, Takashi Taniguchi, Kenji Watanabe, Hogil Baek, Dae-Yeon Kim, Kimoon Lee, Sungchul Mun, Kyu Hyoung Lee, Soohyung Park, Kwanpyo Kim, Young Jae Song, Seung Ah Lee, Hyunwoo J. Kim, Jae Won Shim, Gunuk Wang, Ji-Hoon Kang, Min-Chul Park, Do Kyung
-
Magnetic skyrmions achieve weighted summations in a scalable structure Nat. Electron. (IF 33.7) Pub Date : 2025-02-03
-
Solution-processed wafer-scale indium selenide semiconductor thin films with high mobilities Nat. Electron. (IF 33.7) Pub Date : 2025-02-03 Jing He, Jifeng Ge, Junying Xue, Tingyi Xia, Yongping Dai, Shengqi Wang, Wenjie Li, Zhaoyang Lin
-
Betting on qubits Nat. Electron. (IF 33.7) Pub Date : 2025-01-30
Quantum computing is our 2025 technology of the year.
-
How we controlled the superconducting qubit Nat. Electron. (IF 33.7) Pub Date : 2025-01-30 Yasunobu Nakamura
-
How to scale the electronic control systems of a quantum computer Nat. Electron. (IF 33.7) Pub Date : 2025-01-30 Anton Potočnik
-
The success and failure of quantum computing start-ups Nat. Electron. (IF 33.7) Pub Date : 2025-01-30 Barry C. Sanders
-
A universal inverse-design magnonic device Nat. Electron. (IF 33.7) Pub Date : 2025-01-30 Noura Zenbaa, Claas Abert, Fabian Majcen, Michael Kerber, Rostyslav O. Serha, Sebastian Knauer, Qi Wang, Thomas Schrefl, Dieter Suess, Andrii V. Chumak
-
Making diamonds with sticky tape Nat. Electron. (IF 33.7) Pub Date : 2025-01-27 Matthew Parker
The researchers — who are based at various institutions in China and Germany — start with a CVD-grown diamond membrane on a silicon substrate and crop the wafer edge. Using the exposed diamond–substrate edge, the membrane could then be exfoliated using Scotch tape and a peeling machine. The method can create diamond membranes up to 2 inches wide and with an average roughness of the bottom surface under
-
Lasers on 300-mm silicon wafers Nat. Electron. (IF 33.7) Pub Date : 2025-01-27 Yan Huang
The researchers — who are based at imec, KU Leuven and Ghent University — grew GaAs with low defectivity in high-aspect-ratio trenches directly on a ridged silicon wafer. Nano-ridge structures, containing an embedded p–i–n heterojunction and three InGaAs quantum wells (which act as the gain region of the laser), were then grown on top of the GaAs. More than 300 laser diodes were tested on the wafer
-
Stacked single-crystalline field-effect transistors Nat. Electron. (IF 33.7) Pub Date : 2025-01-27 Katharina Zeissler
The researchers — who are based at the Massachusetts Institute of Technology, the Samsung Advanced Institute of Technology, Sungkyunkwan University and the University of Texas at Dallas — show that confined selective growth of transition metal dichalcogenides can be used to integrate n-type field-effect transistors based on molybdenum disulfide on top of p-type field-effect transistor arrays based
-
Crosstalk-free high-definition organic microdisplays Nat. Electron. (IF 33.7) Pub Date : 2025-01-27 Ching-Fuh Lin, Chih-Yuan Tsai
-
Microlithography of hole transport layers for high-resolution organic light-emitting diodes with reduced electrical crosstalk Nat. Electron. (IF 33.7) Pub Date : 2025-01-27 Hyukmin Kweon, Seonkwon Kim, Borina Ha, Seunghan Lee, Soyeon Lee, SeungHwan Roh, Hayoung Oh, Jiyeon Ha, Minsu Kang, Moon Sung Kang, Jeong Ho Cho, Do Hwan Kim
-
A dual-domain compute-in-memory system for general neural network inference Nat. Electron. (IF 33.7) Pub Date : 2025-01-24 Ze Wang, Ruihua Yu, Zhiping Jia, Zhifan He, Tianhao Yang, Bin Gao, Yang Li, Zhenping Hu, Zhenqi Hao, Yunrui Liu, Jianghai Lu, Peng Yao, Jianshi Tang, Qi Liu, He Qian, Huaqiang Wu
-
A flexible active-matrix X-ray detector with a backplane based on two-dimensional materials Nat. Electron. (IF 33.7) Pub Date : 2025-01-22 Beom Jin Kim, Bangjie Shao, Anh Tuan Hoang, Seokmin Yun, Juyeong Hong, Jialiang Wang, Ajit Kumar Katiyar, Seunghyeon Ji, Duo Xu, Yang Chai, Jong-Hyun Ahn
-
Spin injection in graphene using ferromagnetic van der Waals contacts of indium and cobalt Nat. Electron. (IF 33.7) Pub Date : 2025-01-20 Soumya Sarkar, Saeyoung Oh, Peter J. Newton, Yang Li, Yiru Zhu, Maheera Abdul Ghani, Han Yan, Hu Young Jeong, Yan Wang, Manish Chhowalla
-
Efficient 3D imaging with reconfigurable sensors Nat. Electron. (IF 33.7) Pub Date : 2025-01-10 Xiaohua Feng
-
A reconfigurable heterostructure transistor array for monocular 3D parallax reconstruction Nat. Electron. (IF 33.7) Pub Date : 2025-01-10 Zhexin Li, Hao Xu, Yiqiang Zheng, Lingchen Liu, Linlin Li, Zheng Lou, Lili Wang
-
Improved organic electrochemical transistor stability using solvent degassing and chemical doping Nat. Electron. (IF 33.7) Pub Date : 2025-01-10 Vianna N. Le, Kyle N. Baustert, Megan R. Brown, Joel H. Bombile, Lucas Q. Flagg, Karl Thorley, Christina J. Kousseff, Olga Solomeshch, Iain McCulloch, Nir Tessler, Chad Risko, Kenneth R. Graham, Alexandra F. Paterson
-
Self-supervised video processing with self-calibration on an analogue computing platform based on a selector-less memristor array Nat. Electron. (IF 33.7) Pub Date : 2025-01-08 Hakcheon Jeong, Seungjae Han, See-On Park, Tae Ryong Kim, Jongmin Bae, Taehwan Jang, Yoonho Cho, Seokho Seo, Hyun-Jun Jeong, Seungwoo Park, Taehoon Park, Juyoung Oh, Jeongwoo Park, Kwangwon Koh, Kang-Ho Kim, Dongsuk Jeon, Inyong Kwon, Young-Gyu Yoon, Shinhyun Choi
-
An index-free sparse neural network using two-dimensional semiconductor ferroelectric field-effect transistors Nat. Electron. (IF 33.7) Pub Date : 2025-01-08 Hongkai Ning, Hengdi Wen, Yuan Meng, Zhihao Yu, Yuxiang Fu, Xilu Zou, Yilin Shen, Xiai Luo, Qiyue Zhao, Tao Zhang, Lei Liu, Shitong Zhu, Taotao Li, Weisheng Li, Li Li, Li Gao, Yi Shi, Xinran Wang
-
A real-time, scalable, fast and resource-efficient decoder for a quantum computer Nat. Electron. (IF 33.7) Pub Date : 2025-01-07 Ben Barber, Kenton M. Barnes, Tomasz Bialas, Okan Buğdaycı, Earl T. Campbell, Neil I. Gillespie, Kauser Johar, Ram Rajan, Adam W. Richardson, Luka Skoric, Canberk Topal, Mark L. Turner, Abbas B. Ziad
-
A programmable metasurface antenna that approaches the wireless information mapping limit Nat. Electron. (IF 33.7) Pub Date : 2025-01-06 Haotian Wu, Ruiwen Shao, Zhixia Xu, Jun Wei Wu, Shurun Tan, Xixi Wang, Zhenjie Qi, Qiang Cheng, Yuanjin Zheng, Yu Luo, Tie Jun Cui
-
Neuromorphic weighted sums with magnetic skyrmions Nat. Electron. (IF 33.7) Pub Date : 2025-01-06 Tristan da Câmara Santa Clara Gomes, Yanis Sassi, Dédalo Sanz-Hernández, Sachin Krishnia, Sophie Collin, Marie-Blandine Martin, Pierre Seneor, Vincent Cros, Julie Grollier, Nicolas Reyren
-
A mass transfer technology for high-density two-dimensional device integration Nat. Electron. (IF 33.7) Pub Date : 2025-01-06 Liwei Liu, Zhenggang Cai, Siwei Xue, Hai Huang, Sifan Chen, Saifei Gou, Zhejia Zhang, Yiming Guo, Yusheng Yao, Wenzhong Bao, Peng Zhou
-
Rapid cryogenic characterization of 1,024 integrated silicon quantum dot devices Nat. Electron. (IF 33.7) Pub Date : 2025-01-03 Edward J. Thomas, Virginia N. Ciriano-Tejel, David F. Wise, Domenic Prete, Mathieu de Kruijf, David J. Ibberson, Grayson M. Noah, Alberto Gomez-Saiz, M. Fernando Gonzalez-Zalba, Mark A. I. Johnson, John J. L. Morton
-
Soft electronics based on particle engulfment printing Nat. Electron. (IF 33.7) Pub Date : 2025-01-02 Rongzhou Lin, Chengmei Jiang, Sippanat Achavananthadith, Xin Yang, Hashina Parveen Anwar Ali, Jianfeng Ping, Yuxin Liu, Xianmin Zhang, Benjamin C. K. Tee, Yong Lin Kong, John S. Ho
-
The future of semiconductor technology shapes up Nat. Electron. (IF 33.7) Pub Date : 2024-12-23
Technology breakthroughs at the 2024 IEEE International Electron Devices Meeting, which this year has a focus on shaping tomorrow’s semiconductor technology.
-
Bridging the digital–physical divide using haptic and wearable technologies Nat. Electron. (IF 33.7) Pub Date : 2024-12-20 Jiaming Qi, Longteng Yu, Eng Tat Khoo, Kian Wei Ng, Yujia Gao, Alfred Wei Chieh Kow, Joo Chuan Yeo, Chwee Teck Lim
-
Building inverters with stacked complementary nanosheet transistors Nat. Electron. (IF 33.7) Pub Date : 2024-12-19 Xiong Xiong, Yanqing Wu
-
Optoelectronic synthesizer for tunable microwave generation with ultralow phase noise Nat. Electron. (IF 33.7) Pub Date : 2024-12-18
-
All-polymer electrochromic displays with a dual-functional polymer conductor Nat. Electron. (IF 33.7) Pub Date : 2024-12-17
-
An n-doped capacitive transparent conductor for all-polymer electrochromic displays Nat. Electron. (IF 33.7) Pub Date : 2024-12-17 Inho Song, Won-June Lee, Zhifan Ke, Liyan You, Ke Chen, Sumon Naskar, Palak Mehra, Jianguo Mei
-
-
Three-dimensional transistors with two-dimensional semiconductors for future CMOS scaling Nat. Electron. (IF 33.7) Pub Date : 2024-12-16 Arnab Pal, Tanmay Chavan, Jacob Jabbour, Wei Cao, Kaustav Banerjee
-
Safe, secure and trustworthy compute-in-memory accelerators Nat. Electron. (IF 33.7) Pub Date : 2024-12-13 Ziyu Wang, Yuting Wu, Yongmo Park, Wei D. Lu
-
An optoelectronic microwave synthesizer with frequency tunability and low phase noise Nat. Electron. (IF 33.7) Pub Date : 2024-12-11 Igor Kudelin, Pedram Shirmohammadi, William Groman, Samin Hanifi, Megan L. Kelleher, Dahyeon Lee, Takuma Nakamura, Charles A. McLemore, Alexander Lind, Dylan Meyer, Junwu Bai, Joe C. Campbell, Steven M. Bowers, Franklyn Quinlan, Scott A. Diddams
-
The use of wearable sensors in perioperative surgical care Nat. Electron. (IF 33.7) Pub Date : 2024-12-09 Stephen R. Knight, Kenneth A. Mclean, Ewen M. Harrison
In a recent Review article, Joseph Wang and colleagues examined how multimodal wearable sensors could potentially be used to transform healthcare1. Multiple clinical settings were highlighted, including applications in neonatal care, sepsis, diabetes and neurological disease. However, the use of multimodal sensors is also fundamental to the future delivery of surgical care. The early postoperative
-
Two nanometre CMOS technology Nat. Electron. (IF 33.7) Pub Date : 2024-12-09 Owain Vaughan
For TSMC, Geoffrey Yeap and colleagues report a 2 nm logic platform. Based on gate-all-around nanosheet transistors, it features a scalable copper-based redistribution layer and a flat passivation layer, as well as through-silicon vias. Compared with their previous 3 nm technology node, which was reported at the 2022 IEEE International Electron Devices Meeting, this platform offers an increase in chip
-
Turning integrated circuits into ultrasonic transducers Nat. Electron. (IF 33.7) Pub Date : 2024-12-09 Chaerin Oh, Hyunjoo Jenny Lee
-
A quantum standard of resistance without a magnetic field Nat. Electron. (IF 33.7) Pub Date : 2024-12-09 Luca Callegaro
-
-
Multiscale thermal modelling with AI Nat. Electron. (IF 33.7) Pub Date : 2024-12-06 Matthew Parker
Alexander Gabourie and colleagues — who are based at DeepSim, Inc., the University of California Davis and Stanford University — now report an artificial intelligence (AI)-accelerated thermal model than can work effectively at multiple length scales, from atomistic- to centimetre-scale circuits. The model first uses molecular dynamics to model thermal transport for atomic structures and interfaces
-
Pixels that can focus Nat. Electron. (IF 33.7) Pub Date : 2024-12-06 Katharina Zeissler
The researchers — who are based at Université Grenoble Alpes — fabricated a 58 × 60-pixel array in which each 70 μm × 70 μm pixel has its own circuit to measure the incident light phase and modulate it via applying an electric field to the liquid-crystal layer. The pixels thus combine the sensing and modulating functions. The co-integration means the system is compact and its optical alignment is naturally
-
A wide-angle compound eye in CMOS Nat. Electron. (IF 33.7) Pub Date : 2024-12-06 Matthew Parker
The researchers — who are based at Zhejiang University and Westlake University — used a 2.5D out-of-plane architecture that integrates graphene monolayers on a gold–silicon columnar metasurface. These structures effectively act as individual photodetection units that allow a wide field-of-view to be achieved, similar to the ommatidia in the compound eye of some animals. The team created a 16 × 16-pixel
-
A RRAM that endures Nat. Electron. (IF 33.7) Pub Date : 2024-12-06 Katharina Zeissler
The researchers — who are based at Tsinghua University, Beijing InnoMem Technologies Co., Ltd and the Beijing Microelectronics Technology Institute — increased the endurance to 107 cycles through device-, circuit- and operation-level optimization. On the device level, the team introduced an interface modulation layer between the hafnium oxide (HfOx)-based resistive switching layer and oxygen exchange
-
Creating high-performance transistors by coating carbon nanotube arrays Nat. Electron. (IF 33.7) Pub Date : 2024-12-06 Aaron D. Franklin
-
A printed gallium oxide dielectric for 2D transistors Nat. Electron. (IF 33.7) Pub Date : 2024-12-05 Tuan Dung Nguyen, Qing Tu, Xu Zhang, Yuxuan Cosmi Lin
-
A zero external magnetic field quantum standard of resistance at the 10−9 level Nat. Electron. (IF 33.7) Pub Date : 2024-12-04 D. K. Patel, K. M. Fijalkowski, M. Kruskopf, N. Liu, M. Götz, E. Pesel, M. Jaime, M. Klement, S. Schreyeck, K. Brunner, C. Gould, L. W. Molenkamp, H. Scherer
-
Building brain–computer interfaces with graphene Nat. Electron. (IF 33.7) Pub Date : 2024-12-03 Owain Vaughan
Carolina Aguilar, CEO of INBRAIN Neuroelectronics, tells Nature Electronics about the company’s work on graphene-based brain–computer interfaces and their recent in-patient tests.
-
Build it up again Nat. Electron. (IF 33.7) Pub Date : 2024-11-27
Numerous developments in three-dimensional electronics have emerged in 2024, creating new opportunities for conventional and emerging electronic systems.
-
Wood-based electronics that fold Nat. Electron. (IF 33.7) Pub Date : 2024-11-15 Katharina Zeissler
The researchers — who are based at Nanjing Forestry University, the Nanjing University of Science and Technology, the Northeast Forestry University, South China Agricultural University and Scion — used a transparent wood film substrate and a conductive cellulose-based ink to fabricate flexible electronics that can be bent, folded and rolled. To make the transparent substrate, a delignification process
-
Integration of high-κ native oxides of gallium for two-dimensional transistors Nat. Electron. (IF 33.7) Pub Date : 2024-11-15 Kongyang Yi, Wen Qin, Yamin Huang, Yao Wu, Shaopeng Feng, Qiyi Fang, Xun Cao, Ya Deng, Chao Zhu, Xilu Zou, Kah-Wee Ang, Taotao Li, Xinran Wang, Jun Lou, Keji Lai, Zhili Hu, Zhuhua Zhang, Yemin Dong, Kourosh Kalantar-Zadeh, Zheng Liu
-
Piezoelectric biomaterials printed on the fly Nat. Electron. (IF 33.7) Pub Date : 2024-11-14 Katharina Zeissler
The researchers — who are based at the Hong Kong University of Science and Technology, the City University of Hong Kong and the École Polytechnique Fédérale de Lausanne — tune the spatial organization of biomolecular inks through electrohydrodynamic aerosolization and in situ electrical poling. Films printed from β-glycine–polyvinylpyrrolidone have a piezoelectric voltage coefficient of 190 × 10−3
-
Defects make better semiconductors Nat. Electron. (IF 33.7) Pub Date : 2024-11-14 Matthew Parker
The researchers — who are based at the University of Illinois Urbana-Champaign — show that in certain compound semiconductors the defects self-organize into electrically neutral complexes. These push deep-level traps closer to the conduction band edge, where they act as donors. So rather than degrade performance, the CuIn5Se8 field-effect transistors with introduced defects show better performance
-
Creating sound bubbles with intelligent headsets Nat. Electron. (IF 33.7) Pub Date : 2024-11-14 Dong Ma
-
Hearable devices with sound bubbles Nat. Electron. (IF 33.7) Pub Date : 2024-11-14 Tuochao Chen, Malek Itani, Sefik Emre Eskimez, Takuya Yoshioka, Shyamnath Gollakota