-
Analogue chips for energy-efficient AI Nat. Electron. (IF 34.3) Pub Date : 2023-09-25 Silvia Conti
The researchers — who are based at IBM Research — fabricated a 14-nm inference chip containing 34 tiles, each of which contains a crossbar array of phase-change memory devices that can perform matrix–vector multiplications. Overall, the chip has 35 million phase-change memory devices. The chip also contains digital-to-analogue input, analogue-to-digital output, analogue peripheral circuitry and parallel-2D-mesh
-
Device-scale atomistic modelling of phase-change memory materials Nat. Electron. (IF 34.3) Pub Date : 2023-09-25 Yuxing Zhou, Wei Zhang, En Ma, Volker L. Deringer
-
The year of brain–computer interfaces Nat. Electron. (IF 34.3) Pub Date : 2023-09-25
With advances in capabilities coming hand in hand with calls for regulation, 2023 is proving to be a critical year for brain–computer interfaces.
-
Quantum dots get cross Nat. Electron. (IF 34.3) Pub Date : 2023-09-25 Stuart Thomas
The researchers — who are based at Delft University of Technology, QuTech and the Netherlands Organisation for Applied Scientific Research — created their crossbar architecture using strained germanium quantum wells with double-barrier gates and a diagonal plunger line layout. This approach allows a single gate to control multiple quantum dots with a sublinear number of control terminals, thus reducing
-
Multiplexed superconducting qubit control at millikelvin temperatures with a low-power cryo-CMOS multiplexer Nat. Electron. (IF 34.3) Pub Date : 2023-09-25 R. Acharya, S. Brebels, A. Grill, J. Verjauw, Ts. Ivanov, D. Perez Lozano, D. Wan, J. Van Damme, A. M. Vadiraj, M. Mongillo, B. Govoreanu, J. Craninckx, I. P. Radu, K. De Greve, G. Gielen, F. Catthoor, A. Potočnik
-
Spin-acoustic control of silicon vacancies in 4H silicon carbide Nat. Electron. (IF 34.3) Pub Date : 2023-09-21 Jonathan R. Dietz, Boyang Jiang, Aaron M. Day, Sunil A. Bhave, Evelyn L. Hu
-
Quantum annealing hits the barriers Nat. Electron. (IF 34.3) Pub Date : 2023-09-18 Matthew Parker
The researchers — who are based at the National Institute for Materials Science, Mie University, Keio University, Osaka University and TDK Corporation — studied 252 combinations of different magnesium (Mg2+) and gallium (Ga3+) cation occupations in the spinel material. The simulations were performed using a machine-learning factorization machine developed by the team in combination with D-Wave’s Advantage
-
OLED-on-CMOS probes for single-neuron optogenetics Nat. Electron. (IF 34.3) Pub Date : 2023-09-14 Yiyuan Yang, Mingzheng Wu
-
A retrainable neuromorphic biosensor for on-chip learning and classification Nat. Electron. (IF 34.3) Pub Date : 2023-09-14 E. R. W. van Doremaele, X. Ji, J. Rivnay, Y. van de Burgt
-
Adhesive bioelectronics for sutureless epicardial interfacing Nat. Electron. (IF 34.3) Pub Date : 2023-09-01 Heewon Choi, Yewon Kim, Sumin Kim, Hyunjin Jung, Sungjun Lee, Kyoungryong Kim, Hyung-Seop Han, Ju Youn Kim, Mikyung Shin, Donghee Son
-
Biphasic quasistatic brain communication for energy-efficient wireless neural implants Nat. Electron. (IF 34.3) Pub Date : 2023-08-31 Baibhab Chatterjee, Mayukh Nath, Gaurav Kumar K, Shulan Xiao, Krishna Jayant, Shreyas Sen
-
An Ising solver chip based on coupled ring oscillators with a 48-node all-to-all connected array architecture Nat. Electron. (IF 34.3) Pub Date : 2023-08-31 Hao Lo, William Moy, Hanzhao Yu, Sachin Sapatnekar, Chris H. Kim
-
Ferroelectric gating of two-dimensional semiconductors for the integration of steep-slope logic and neuromorphic devices Nat. Electron. (IF 34.3) Pub Date : 2023-08-31 Sadegh Kamaei, Xia Liu, Ali Saeidi, Yingfen Wei, Carlotta Gastaldi, Juergen Brugger, Adrian M. Ionescu
-
Communications with guaranteed bandwidth and low latency using frequency-referenced multiplexing Nat. Electron. (IF 34.3) Pub Date : 2023-08-28 Zichuan Zhou, Jinlong Wei, Yuan Luo, Kari A. Clark, Eric Sillekens, Callum Deakin, Ronit Sohanpal, Radan Slavík, Zhixin Liu
-
Petal-like stamps make curvy devices Nat. Electron. (IF 34.3) Pub Date : 2023-08-24 Matthew Parker
The electronics are first fabricated on a planar substrate and then picked up by the petal-like stamp, which consists of a silicone rubber and water-soluble double-sided adhesive tape. Key to the transfer process is controlling the wrapping process so the stamp applies a uniform pressure at all points on the target curvy surface. This is achieved by placing the target and stamp in a pre-strained wrapping
-
A conformal array for understanding plants Nat. Electron. (IF 34.3) Pub Date : 2023-08-24 Matthew Parker
The researchers — who are based at Linköping University, the International School for Advanced Studies, Columbia University, the University of Milan and the Swedish University of Agricultural Sciences — developed a 20 mm × 25 mm grid containing 120 polymer-based electrodes. They found that the action potentials in the lobes of the Venus flytrap when a trigger hair is stimulated propagate at constant
-
Two-dimensional materials cool down Nat. Electron. (IF 34.3) Pub Date : 2023-08-24 Stuart Thomas
The researchers — who are based at Yonsei University, Hongik University, Kongju National University and the Institute for Basic Science in Korea — developed a hot-wall metal–organic chemical vapour deposition method to grow MoS2 on flexible substrates attached to a rigid carrier substrate, which can later be removed. The growth process also leads to larger domain sizes across the MoS2 films compared
-
A shape display that can sense Nat. Electron. (IF 34.3) Pub Date : 2023-08-24 Katharina Zeissler
Each cellular unit has a hydraulically amplified self-healing electrostatic actuator, a sensor combining a soft magnetic block and magnetometer, and a driving circuit with a high-voltage sensor to regulate the actuator voltage. The cells, which are 60 mm × 60 mm in size, can exhibit reversible shape morphing at a rate of up to 50 Hz. The magnetic-based sensors embedded in the surface layer are interference-free
-
Perovskite devices power up Nat. Electron. (IF 34.3) Pub Date : 2023-08-24
Metal halide perovskites are of increasing use in applications beyond conventional photovoltaics, from flexible solar cells for wearable devices to field-effect transistors for unconventional computing.
-
Tin perovskite transistors and complementary circuits based on A-site cation engineering Nat. Electron. (IF 34.3) Pub Date : 2023-08-21 Huihui Zhu, Wonryeol Yang, Youjin Reo, Guanhaojie Zheng, Sai Bai, Ao Liu, Yong-Young Noh
-
Optogenetic stimulation probes with single-neuron resolution based on organic LEDs monolithically integrated on CMOS Nat. Electron. (IF 34.3) Pub Date : 2023-08-17 Adriaan J. Taal, Ilke Uguz, Sabina Hillebrandt, Chang-Ki Moon, Victoria Andino-Pavlovsky, Jaebin Choi, Changmin Keum, Karl Deisseroth, Malte C. Gather, Kenneth L. Shepard
-
-
Quantum transport through a single atomically precise graphene nanoribbon Nat. Electron. (IF 34.3) Pub Date : 2023-08-14
-
Contacting individual graphene nanoribbons using carbon nanotube electrodes Nat. Electron. (IF 34.3) Pub Date : 2023-08-14 Jian Zhang, Liu Qian, Gabriela Borin Barin, Abdalghani H. S. Daaoub, Peipei Chen, Klaus Müllen, Sara Sangtarash, Pascal Ruffieux, Roman Fasel, Hatef Sadeghi, Jin Zhang, Michel Calame, Mickael L. Perrin
-
Thin-film image sensors with a pinned photodiode structure Nat. Electron. (IF 34.3) Pub Date : 2023-08-14 Jiwon Lee, Epimitheas Georgitzikis, Yannick Hermans, Nikolas Papadopoulos, Naresh Chandrasekaran, Minhyun Jin, Abu Bakar Siddik, Florian De Roose, Griet Uytterhoeven, Joo Hyoung Kim, Renaud Puybaret, Yunlong Li, Vladimir Pejovic, Gauri Karve, David Cheyns, Jan Genoe, Paweł E. Malinowski, Paul Heremans, Kris Myny
-
Integrated devices that can recognize hand gestures Nat. Electron. (IF 34.3) Pub Date : 2023-08-10 Chanho Shin, Tse Nga Ng
-
Real-time finger motion recognition using skin-conformable electronics Nat. Electron. (IF 34.3) Pub Date : 2023-08-10 Haein Cho, Inho Lee, Jingon Jang, Jae-Hyun Kim, Hanbee Lee, Sungjun Park, Gunuk Wang
-
A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference Nat. Electron. (IF 34.3) Pub Date : 2023-08-10 Manuel Le Gallo, Riduan Khaddam-Aljameh, Milos Stanisavljevic, Athanasios Vasilopoulos, Benedikt Kersting, Martino Dazzi, Geethan Karunaratne, Matthias Brändli, Abhairaj Singh, Silvia M. Müller, Julian Büchel, Xavier Timoneda, Vinay Joshi, Malte J. Rasch, Urs Egger, Angelo Garofalo, Anastasios Petropoulos, Theodore Antonakopoulos, Kevin Brew, Samuel Choi, Injo Ok, Timothy Philip, Victor Chan, Claire
-
Electrically tunable magnetic fluctuations in multilayered vanadium-doped tungsten diselenide Nat. Electron. (IF 34.3) Pub Date : 2023-08-10 Lan-Anh T. Nguyen, Jinbao Jiang, Tuan Dung Nguyen, Philip Kim, Min-Kyu Joo, Dinh Loc Duong, Young Hee Lee
-
Building resilience in high-tech supply chains Nat. Electron. (IF 34.3) Pub Date : 2023-08-09 Glenn A. Aguilar-Hernandez, Ankita Singhvi, Catrin Böcher, Xiaoyang Zhong
-
High-performance metal halide perovskite transistors Nat. Electron. (IF 34.3) Pub Date : 2023-08-07 Ao Liu, Huihui Zhu, Sai Bai, Youjin Reo, Mario Caironi, Annamaria Petrozza, Letian Dou, Yong-Young Noh
-
Metasurface-enabled smart wireless attacks at the physical layer Nat. Electron. (IF 34.3) Pub Date : 2023-08-07 Menglin Wei, Hanting Zhao, Vincenzo Galdi, Lianlin Li, Tie Jun Cui
-
Nanoelectromechanical resonators for gigahertz frequency control based on hafnia–zirconia–alumina superlattices Nat. Electron. (IF 34.3) Pub Date : 2023-07-27 Troy Tharpe, Eitan Hershkovitz, Faysal Hakim, Honggyu Kim, Roozbeh Tabrizian
-
Transistors pile up Nat. Electron. (IF 34.3) Pub Date : 2023-07-26 Stuart Thomas
The researchers used extreme-ultraviolet patterning to define a silicon germanium/silicon epitaxial layer stack that forms the basis of the top and bottom transistor channel layers. A silicon nitride cover spacer was used to shield the top device during formation of the source and drain for the bottom device, and a silicon dioxide isolation layer was used to shield the bottom device during source and
-
A ferroelectric capacitor that scales Nat. Electron. (IF 34.3) Pub Date : 2023-07-26 Katharina Zeissler
The researchers — who are based at Stanford University, Western Digital, the University of Nebraska-Lincoln, the University of Missouri and SLAC National Accelerator Laboratory — show that the capacitors have an operation voltage of 1.3 V (which is lower than the industrial requirement of 1.5 V), a polarization switching of 108 μC cm–2 and a device endurance of up to 1010 cycles. Device fatigue under
-
The next generation of gate-all-around transistors Nat. Electron. (IF 34.3) Pub Date : 2023-07-26 Lishu Wu
The researchers built upon first-generation gate-all-around technology, which is currently in mass production, to develop this second-generation technology. The gain in performance is attributed to the improved uniformity of the epitaxially grown source and drain contacts on very thin nanosheets, and to optimized metal gate deposition that reduces parasitic leakage, prevents damage to the dielectric
-
A subdural chip with 65,000 channels Nat. Electron. (IF 34.3) Pub Date : 2023-07-26 Matthew Parker
Although the approach uses an electrode array, the silicon substrate can be thinned to 15 μm and is then encapsulated by polyimide and parylene (with a total thickness of 25 μm). This is sufficiently thin to be positioned in the subdural space of the skull and flexible enough to conform to the brain surface. The 6.8 mm × 7.4 mm chip contains an array with 65,536 channels, as well as electronics to
-
Superconducting radiofrequency transistors Nat. Electron. (IF 34.3) Pub Date : 2023-07-26 Matthew Parker
The HEMTs are based on indium gallium arsenide (InGaAs) and use superconducting niobium-based contacts. At 4 K, the niobium-based contacts have a resistance of 37 Ω μm, about 20% lower than molybdenum-based contacts. A 70-nm-gate-length InGaAs HEMT exhibited (at 4 K) a unity gain cut-off frequency of 601 GHz and unity power gain cut-off frequency of 593 GHz. The researchers — who are based at the Korea
-
AI hardware has an energy problem Nat. Electron. (IF 34.3) Pub Date : 2023-07-26
New energy-efficient electronic hardware will be required to sustain the development of machine learning and artificial intelligence.
-
Pushing carbon nanotube circuits below the 10-nm node Nat. Electron. (IF 34.3) Pub Date : 2023-07-26 Rongmei Chen
-
Materials and devices as solutions to computational problems in machine learning Nat. Electron. (IF 34.3) Pub Date : 2023-07-26 Nathaniel Joseph Tye, Stephan Hofmann, Phillip Stanley-Marbell
-
Solving the big computing problems in the twenty-first century Nat. Electron. (IF 34.3) Pub Date : 2023-07-20 Alexander A. Conklin, Suhas Kumar
-
An autonomous wearable biosensor powered by a perovskite solar cell Nat. Electron. (IF 34.3) Pub Date : 2023-07-20 Jihong Min, Stepan Demchyshyn, Juliane R. Sempionatto, Yu Song, Bekele Hailegnaw, Changhao Xu, Yiran Yang, Samuel Solomon, Christoph Putz, Lukas E. Lehner, Julia Felicitas Schwarz, Clemens Schwarzinger, Markus Clark Scharber, Ehsan Shirzaei Sani, Martin Kaltenbrunner, Wei Gao
-
Scaling aligned carbon nanotube transistors to a sub-10 nm node Nat. Electron. (IF 34.3) Pub Date : 2023-07-17 Yanxia Lin, Yu Cao, Sujuan Ding, Panpan Zhang, Lin Xu, Chenchen Liu, Qianlan Hu, Chuanhong Jin, Lian-Mao Peng, Zhiyong Zhang
-
Imperfection-enabled memristive switching in van der Waals materials Nat. Electron. (IF 34.3) Pub Date : 2023-07-17 Mengjiao Li, Hefei Liu, Ruoyu Zhao, Feng-Shou Yang, Mingrui Chen, Ye Zhuo, Chongwu Zhou, Han Wang, Yen-Fu Lin, J. Joshua Yang
-
Semiconductor applications of large-scale meron lattices Nat. Electron. (IF 34.3) Pub Date : 2023-07-13
-
-
Optically and radiofrequency-transparent metadevices based on quasi-one-dimensional surface plasmon polariton structures Nat. Electron. (IF 34.3) Pub Date : 2023-07-13 Hao-Ran Zu, Bian Wu, Biao Chen, Wen-Hua Li, Tao Su, Ying Liu, Wen-Xuan Tang, Da-Ping He, Tie-Jun Cui
-
Topology-induced chiral photon emission from a large-scale meron lattice Nat. Electron. (IF 34.3) Pub Date : 2023-07-13 Xuefeng Wu, Xu Li, Wenyu Kang, Xichao Zhang, Li Chen, Zhibai Zhong, Yan Zhou, Johan Åkerman, Yaping Wu, Rong Zhang, Junyong Kang
-
A CMOS-integrated spintronic compute-in-memory macro for secure AI edge devices Nat. Electron. (IF 34.3) Pub Date : 2023-07-13 Yen-Cheng Chiu, Win-San Khwa, Chia-Sheng Yang, Shih-Hsin Teng, Hsiao-Yu Huang, Fu-Chun Chang, Yuan Wu, Yu-An Chien, Fang-Ling Hsieh, Chung-Yuan Li, Guan-Yi Lin, Po-Jung Chen, Tsen-Hsiang Pan, Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Mon-Shu Ho, Chieh-Pu Lo, Yu-Der Chih, Tsung-Yung Jonathan Chang, Meng-Fan Chang
-
Robots with sense Nat. Electron. (IF 34.3) Pub Date : 2023-06-27 Stuart Thomas
The researchers — who are based at Tsinghua University — use a multimodal sensing approach that includes a dynamic vision sensor, a frame-based camera and an inertial measurement unit. The incoming data are encoded and processed using a multimodal hybrid neural network and multiscale liquid-state-machine models to create a sparse representation space, which also allows the robot to function in situations
-
New visions for touchless interfaces Nat. Electron. (IF 34.3) Pub Date : 2023-06-27
The capabilities of touchless user interfaces that recognize hand gestures are improving, but their place in the future of everyday electronics remains uncertain.
-
Bridging spinal cord injuries wirelessly Nat. Electron. (IF 34.3) Pub Date : 2023-06-27 Matthew Parker
The interface consists of two cortical implants containing 64 electrodes and peripheral electronics that measure electrocorticographic signals from the sensorimotor cortex. Antennas are used to power the implanted devices via wireless induction and to transfer the signals. The signal is converted into intended movements and a commercial implantable pulse generator — previously used to treat Parkinson’s
-
-
A solid-state quantum microscope for wavefunction control of an atom-based quantum dot device in silicon Nat. Electron. (IF 34.3) Pub Date : 2023-06-26 B. Voisin, J. Salfi, D. D. St Médar, B. C. Johnson, J. C. McCallum, M. Y. Simmons, S. Rogge
-
A miniature sensor for position tracking Nat. Electron. (IF 34.3) Pub Date : 2023-06-27 Katharina Zeissler
The researchers use an external magnetic field, generated by pulsed currents in electromagnetic coils, to cause rotational oscillation of a spherical neodymium iron boron magnet suspended by a filament above a second, fixed magnet. After the excitation, the rotation decays and is detected via the voltage induced in 16 receiver coils. The signal amplitude and distribution over these coils can be used
-
A clean ballistic quantum point contact in strontium titanate Nat. Electron. (IF 34.3) Pub Date : 2023-06-22 Evgeny Mikheev, Ilan T. Rosen, Johannes Kombe, François Damanet, Marc A. Kastner, David Goldhaber-Gordon
-
Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide Nat. Electron. (IF 34.3) Pub Date : 2023-06-19 Guanghui Cheng, Mohammad Mushfiqur Rahman, Andres Llacsahuanga Allcca, Avinash Rustagi, Xingtao Liu, Lina Liu, Lei Fu, Yanglin Zhu, Zhiqiang Mao, Kenji Watanabe, Takashi Taniguchi, Pramey Upadhyaya, Yong P. Chen
-
Current-controlled antiferromagnetic memory Nat. Electron. (IF 34.3) Pub Date : 2023-06-19 Pedram Khalili Amiri, Francesca Garesci, Giovanni Finocchio
-
Twisted double bilayers of an antiferromagnet show tunable moiré magnetism Nat. Electron. (IF 34.3) Pub Date : 2023-06-19