-
综合
- All
- Abh. Math. Semin. Univ. Hambg.
- Acta Appl. Math.
- Acta Math.
- Acta Math. Appl. Sin. Engl. Ser.
- Acta Math. Hungar.
- Acta Math. Sci.
- Acta. Math. Sin. Engl. Ser.
- Adv. Appl. Math.
- Adv. Math.
- Aequat. Math.
- AIMS Math.
- Am. J. Math.
- Am. Math. Monthly
- Anal. Math.
- Analele Univ. Ovidius Constanta - Ser. Mat.
- Ann. Henri Poincaré
- Ann. Math.
- Ann. Math. Artif. Intel.
- Appl. Anal.
- Appl. Math.
- Appl. Math. Comput.
- Appl. Math. Lett.
- Appl. Math. Optim.
- Arab. J. Math.
- Arch. Math.
- Arch. Math. Logic
- Ark. Mat.
- Asian J. Math.
- ASTIN Bull.
- Bull. Aust. Math. Soc.
- Bull. Braz. Math. Soc. New Ser.
- Bull. des Sci. Math.
- Bull. Iran. Math. Soc.
- Bull. Lond. Math. Soc.
- Bull. Malays. Math. Sci. Soc.
- C. R. Math.
- Camb. J. Math.
- Can. J. Math.
- Can. Math. Bull.
- Collect. Math.
- Comb. Probab. Comput.
- Comm. Pure Appl. Math.
- Comment. Math. Helv.
- Commun. Contemp. Math.
- Commun. Math. Phys.
- Commun. Math. Stat.
- Complex Anal. Oper. Theory
- Complexity
- Compos. Math.
- Comput. Math. Appl.
- Comput. Methods Funct. Theory
- Constr. Approx.
- Czechoslov. Math. J.
- Discret. Dyn. Nat. Soc.
- Discret. Math.
- Dokl. Math.
- Ergod. Theory Dyn. Syst.
- Eur. J. Comb.
- Expos. Math.
- Forum Math.
- Forum Math. Pi
- Forum Math. Sigma
- Found. Comput. Math.
- Funct. Anal. Its Appl.
- Georgian Math. J.
- Glasg. Math. J.
- IMA J. Appl. Math.
- Indag. Math.
- Indian J. Pure Appl. Math.
- Int. J. Math.
- Int. Math. Res. Notices
- Integr. Equ. Oper. Theory
- Invent. math.
- Iran. J. Sci. Technol. Trans. Sci.
- Isr. J. Math.
- Izv. Math.
- J. Adv. Res.
- J. Am. Math. Soc.
- J. Anal. Math.
- J. Aust. Math. Soc.
- J. Complex.
- J. Comput. Appl. Math.
- J. Differ. Geom.
- J. Dyn. Diff. Equat.
- J. Egypt. Math. Soc.
- J. Eng. Math.
- J. Group Theory
- J. Inequal. Appl.
- J. Inst. Math. Jussieu
- J. Lond. Math. Soc.
- J. Math.
- J. Math. Imaging Vis.
- J. Math. Pures Appl.
- J. reine angew. Math.
- J. Sched.
- Japan J. Indust. Appl. Math.
- Jpn. J. Math.
- Lith. Math. J.
- manuscripta math.
- Math. Ann.
- Math. Nachr.
- Math. Notes
- Math. Proc. Camb. Philos. Soc.
- Math. Res. Lett.
- Math. Sci.
- Math. Slovaca
- Math. Struct. Comput. Sci.
- Math. Z.
- Mathematics
- Mathematika
- Mediterr. J. Math.
- Milan J. Math.
- Monatshefte Math.
- Moscow Univ. Math. Bull.
- Nagoya Math. J.
- Nature
- Nonlinear Differ. Equ. Appl.
- Open Math.
- Period. Math. Hung.
- Potential Anal.
- Proc. Am. Math. Soc.
- Proc. Edinburgh. Math. Soc.
- Proc. London Math. Soc.
- Proc. Natl. Acad. Sci. U.S.A.
- Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.
- Proc. R. Soc. Edinburgh Sect. A
- Proc. Royal Soc. A: Math. Phys. Eng. Sci.
- Proc. Steklov Inst. Math.
- Publ. math. IHES
- Pure Appl. Math. Q.
- Q. J. Math.
- Quaest. Math.
- Qual. Theory Dyn. Syst.
- RACSAM
- Ramanujan J.
- Res. Math. Sci.
- Results Math.
- Rev. Mat. Complut.
- Rev. Mat. Iberoam.
- Ricerche mat.
- Russ. J. Math. Phys.
- Russ. Math.
- Sb. Math.
- Science
- SIAM J. Sci. Comput.
- SIAM Rev.
- Sib. Adv. Math.
- Sib. Math. J.
- Soft Comput.
- St. Petersburg Math. J.
- Stud. Appl. Math.
- Trans. Am. Math. Soc.
- Transform. Groups
- Ukr. Math. J.
- Vestnik St. Petersb. Univ. Math.
- 数论
-
代数
- All
- Adv. Appl. Clifford Algebras
- Algebr. Represent. Theor.
- Algebra Logic
- Algebra Number Theory
- Algebra Univers.
- Ann. Comb.
- Appl. Algebra Eng. Commun. Comput.
- Appl. Categor. Struct.
- Commun. Algebra
- Des. Codes Cryptogr.
- Dyn. Syst.
- Eng. Anal. Bound. Elem.
- Groups Geom. Dyn.
- Int. J. Algebra Comput.
- J. Algebra
- J. Algebra Appl.
- J. Algebraic Comb.
- J. Knot Theory Ramif.
- J. Pure Appl. Algebra
- Linear Multilinear Algebra
- Rep. Math. Phys.
- Represent. Theory
- Theory Comput. Syst.
- 组合
-
几何
- All
- Adv. Geom.
- Anal. Geom. Metr. Spaces
- Anal. Math. Phys.
- Ann. Glob. Anal. Geom.
- Combinatorica
- Commun. Anal. Geom.
- Complex Var. Elliptic Equ.
- Comput. Geom.
- Des. Codes Cryptogr.
- Differ. Geom. Appl.
- Discret. Comput. Geom.
- Dyn. Syst.
- Finite Fields Their Appl.
- Fractals
- Geom. Dedicata.
- Geom. Funct. Anal.
- Groups Geom. Dyn.
- Int. J. Geom. Methods Mod. Phys.
- J. Geom. Anal.
- J. Geometr. Mech.
- J. Geometr. Phys.
- J. Homotopy Relat. Struct.
- J. Noncommut. Geom.
- J. Symplectic Geom.
- J. Topol. Anal.
- Lobachevskii J. Math.
- 拓扑
-
分析
- All
- Adv. Nonlinear Anal.
- Anal. Geom. Metr. Spaces
- Anal. PDE
- Ann. Funct. Anal.
- Appl. Comput. Harmon. Anal.
- Banach J. Math. Anal.
- Calcolo
- Commun. Anal. Geom.
- Evol. Equat. Control Theory
- Finite Elem. Anal. Des.
- Fract. Calc. Appl. Anal.
- IMA J. Numer. Anal.
- Infin. Dimens. Anal. Quantum Probab. Relat. Top.
- Int. J. Numer. Anal. Methods Geomech.
- J. Contemp. Mathemat. Anal.
- J. Differ. Equ.
- J. Forecast.
- J. Funct. Anal.
- J. Math. Anal. Appl.
- J. Topol. Anal.
- Lobachevskii J. Math.
- Math. Control Relat. Fields
- Numer. Analys. Appl.
- Positivity
- Random Matrices Theory Appl.
- SIAM J. Math. Anal.
- SIAM J. Matrix Anal. Appl.
- SIAM J. Numer. Anal.
-
概率统计
- All
- Am. Stat.
- Ann. Appl. Stat.
- Ann. Inst. Stat. Math.
- Ann. Stat.
- Annu. Rev. Stat. Appl.
- Aust. N. Z. J. Stat.
- Biometrika
- Br. J. Math. Stat. Psychol.
- Can. J. Stat.
- Commun. Stat. Simul. Comput.
- Commun. Stat. Theory Methods
- Comput. Stat.
- Comput. Stat. Data Anal.
- Digit. Signal Process.
- Econom. J.
- Econom. Theory
- Environ. Ecol. Stat.
- Environmetrics
- Eur. J. Oper. Res.
- Extremes
- Finance Stoch.
- Infin. Dimens. Anal. Quantum Probab. Relat. Top.
- Int. J. Biostat.
- Int. Stat. Rev.
- J. Agric. Biol. Environ. Stat.
- J. Am. Stat. Assoc.
- J. Appl. Probab.
- J. Appl. Stat.
- J. Biopharm. Stat.
- J. Comput. Graph. Stat.
- J. Comput. Phys.
- J. Korean Stat. Soc.
- J. Multivar. Anal.
- J. Nonparametr. Stat.
- J. R. Stat. Soc. A
- J. R. Stat. Soc. B
- J. R. Stat. Soc. Ser. C Appl. Stat.
- J. Stat. Comput. Simul.
- J. Stat. Distrib. App.
- J. Stat. Plann. Inference
- J. Theor. Probab.
- J. Time Ser. Anal.
- Law Probab. Risk
- Lifetime Data Anal.
- Lobachevskii J. Math.
- Math. Control Relat. Fields
- Math. Meth. Stat.
- Math. Phys. Anal. Geom.
- Methodol. Comput. Appl. Probab.
- Metrika
- Neural Comput.
- Oxford Bull. Econ. Statistics
- Probab Theory Relat Fields
- Probab. Eng. Inf. Sci.
- Probab. Eng. Mech.
- Probab. Uncertain. Quant. Risk
- Qual. Technol. Quant. Manag.
- Random Matrices Theory Appl.
- Random Struct. Algorithms
- Scand. Actuar. J.
- Scand. J. Stat.
- Scientometrics
- Sequ. Anal.
- Spat. Stat.
- Stat
- Stat. Anal. Data Min.
- Stat. Appl. Genet. Molecul. Biol.
- Stat. Comput.
- Stat. Interface
- Stat. Med.
- Stat. Methods Appl.
- Stat. Neerl.
- Stat. Pap.
- Stat. Probab. Lett.
- Stat. Sin.
- Stata J. Promot. Commun. Stat. Stata
- Statistics
- Stoch. Anal. Appl.
- Stoch. Models
- Stoch. Process. their Appl.
- Stochastics
- Struct. Equ. Model.
- Technometrics
- Test
- Theory Probab. Appl.
-
计算
- All
- Adv. Calc. Var.
- Adv. Comput. Math.
- Ann. Oper. Res.
- Appl. Numer. Math.
- BIT Numer. Math.
- Bull. Math. Biol.
- Combinatorica
- Comput. Aided Geom. Des.
- Comput. Appl. Math.
- Comput. Geom.
- Comput. Math. Math. Phys.
- Comput. Math. Method Med.
- Comput. Math. Organ. Theory
- Comput. Methods Appl. Math.
- Comput. Optim. Appl.
- Comput. Stat. Data Anal.
- Fortschritte der Physik Prog. Phys.
- Front. Comput. Neurosci.
- Front. Neuroinform.
- IET Syst. Biol.
- Inf. Comput.
- Int. J. Algebra Comput.
- Int. J. Comput. Methods
- Int. J. Numer. Methods Fluids
- Interfaces Free Bound.
- J. Math. Biol.
- J. Sci. Comput.
- J. Symb. Comput.
- Log. J. IGPL
- Math. Biosci.
- Math. Comp.
- Math. Med. Biol.
- Moscow Univ. Comput. Math. Cybern.
- Neural Comput.
- Optim. Lett.
- Optim. Methods Softw.
-
其他
- All
- ACM Trans. Algorithms
- ACM Trans. Comput. Log.
- ACM Trans. Model. Comput. Simul.
- Acta Biotheor.
- Adv. Complex Syst.
- Adv. Data Anal. Classif.
- Adv. Differ. Equ.
- Adv. Math. Commun.
- Adv. Nonlinear Stud.
- Adv. Theor. Math. Phys.
- Adv. Theory Simul.
- Ann. I. H. Poincaré – AN
- Ann. Mat. Pura Appl.
- Ann. Pure Appl. Logic
- ANZIAM J.
- Appl. Mathmat. Model.
- Appl. Sci.
- Appl. Stoch. Models Bus.Ind.
- Arch. Rational Mech. Anal.
- AStA. Adv. Stat. Anal.
- Asymptot. Anal.
- Bound. Value Probl.
- Calc. Var.
- Cell Prolif.
- Centaurus
- Chaos Solitons Fractals
- Classical Quant. Grav.
- Commun. Appl. Math. Comput. Sci.
- Commun. Math. Sci.
- Commun. Nonlinear Sci. Numer. Simul.
- Commun. Partial Differ. Equ.
- Comput. Soc. Netw.
- Diff. Equat.
- Differ. Integral Equ.
- Discret. Optim.
- Discrete Appl. Math.
- Discrete Contin. Dyn. Syst. A
- Discrete Contin. Dyn. Syst. B
- Discrete Contin. Dyn. Syst. S
- Dyn. Partial Differ. Equ.
- Eur. J. Appl. Math.
- Evol. Comput.
- Exp. Math.
- Fixed Point Theory Appl.
- Fluct. Noise Lett.
- Fundam. Inform.
- Fuzzy Set. Syst.
- Genet. Epidemiol.
- Grey Syst. Theory Appl.
- Homol. Homotopy Appl.
- IMA J. Manag. Math.
- IMA J. Math. Control Inf.
- Informatica
- Int. J Comput. Math.
- Int. J. Biomath.
- Int. J. Found. Comput. Sci.
- Int. J. Game Theory
- Int. J. Multiscale Comput. Eng.
- Int. J. Nonlinear Sci. Numer. Simul.
- Int. J. Numer. Method. Biomed. Eng.
- Int. J. Solids Struct.
- Int. J. Uncertain. Quantif.
- Integral Transform. Spec. Funct.
- Interdiscip. Sci. Rev.
- Inverse Probl.
- Inverse Probl. Imaging
- J. Appl. Math. Comput.
- J. Approx. Theory
- J. Biol. Syst.
- J. Causal Inference
- J. Choice Model.
- J. Classif.
- J. Comput. Theor. Transp.
- J. Differ. Equ. Appl.
- J. Eur. Math. Soc.
- J. Evol. Equ.
- J. Fixed Point Theory Appl.
- J. Fourier Anal. Appl.
- J. Funct. Spaces
- J. Glob. Optim.
- J. Graph Theory
- J. Inverse Ill posed Probl.
- J. Log. Comput.
- J. Math. Econ.
- J. Math. Fluid Mech.
- J. Math. Industry
- J. Math. Log.
- J. Math. Music
- J. Math. Neurosc.
- J. Math. Phys.
- J. Math. Psychol.
- J. Math. Sociol.
- J. Nonlinear Math. Phys.
- J. Nonlinear Sci.
- J. Numer. Math.
- J. Optim. Theory Appl.
- J. Phys. A: Math. Theor.
- J. Pseudo-Differ. Oper. Appl.
- J. Spectr. Theory
- J. Symb. Log.
- J. Syst. Sci. Complex.
- J. Taibah Univ. Sci.
- Kinet. Relat. Models
- Math. Biosci. Eng.
- Math. Comput. Simul.
- Math. Control Signals Syst.
- Math. Finan. Econ.
- Math. Financ.
- Math. Geosci.
- Math. Logic Q.
- Math. Meth. Oper. Res.
- Math. Methods Appl. Sci.
- Math. Models Comput. Simul.
- Math. Models Methods Appl. Sci.
- Math. Popul. Stud.
- Math. Probl. Eng.
- Math. Program.
- Multiscale Modeling Simul.
- Netw. Heterog. Media
- Nexus Netw. J.
- Nonlinear Anal.
- Nonlinear Anal. Model. Control
- Nonlinear Anal. Real World Appl.
- Nonlinearity
- Numer. Algor.
- Numer. Funct. Anal. Optim.
- Numer. Linear Algebra Appl.
- Numer. Math.
- Numer. Methods Partial Differ. Equ.
- Optim. Eng.
- Optimization
- Order
- P-Adic Num. Ultrametr. Anal. Appl.
- Port. Math.
- Q. J. Mech. Appl. Math.
- Regul. Chaot. Dyn.
- Rend. Lincei Mat. Appl.
- Rev. Math. Phys.
- Rev. Symb. Log.
- Russ. J. Numer. Anal. Math. Model.
- Sel. Math.
- Semigroup Forum
- Set-Valued Var. Anal.
- SIAM J. Appl. Dyn. Syst.
- SIAM J. Appl. Math.
- SIAM J. Control Optim.
- SIAM J. Discret. Math.
- SIAM J. Financ, Math.
- SIAM J. Optim.
- SIAM/ASA J. Uncertain. Quantif.
- Stat. Model.
- Stoch. Dyn.
- Stoch. PDE Anal. Comp.
- Stud. Log.
- Symmetry
- Theor. Math. Phys.
- Z. Angew. Math. Phys.
- Z. für Anal. ihre Anwend.
- ZAMM

显示样式: 排序: IF: - GO 导出
-
Resurgent expansion of Lambert series and iterated Eisenstein integrals Commun. Number Theory Phys. (IF 2.25) Pub Date : 2021-03-01 Daniele Dorigoni; Axel Kleinschmidt
We consider special Lambert series as generating functions of divisor sums and determine their complete transseries expansion near rational roots of unity. Our methods also yield new insights into the Laurent expansions and modularity properties of iterated Eisenstein integrals that have recently attracted attention in the context of certain period integrals and string theory scattering amplitudes
-
Vertex operator algebras of rank $2$: The Mathur–Mukhi–Sen theorem revisited Commun. Number Theory Phys. (IF 2.25) Pub Date : 2021-03-01 Geoffrey Mason; Kiyokazu Nagatomo; Yuichi Sakai
Let $V$ be a strongly regular vertex operator algebra and let $\mathfrak{ch}_V$ be the space spanned by the characters of the irreducible $V$-modules. It is known that $\mathfrak{ch}_V$ is the space of solutions of a so-called modular linear differential equation (MLDE). In this paper we obtain a classification of those $V$ for which the corresponding MLDE is irreducible and monic of order $2$. It
-
Gamma functions, monodromy and Frobenius constants Commun. Number Theory Phys. (IF 2.25) Pub Date : 2021-03-01 Spencer Bloch; Masha Vlasenko
In an important paper [8], Golyshev and Zagier introduce what we will refer to as Frobenius constants $\kappa_{\rho,n}$ associated to an ordinary linear differential operator $L$ with a reflection type singularity at $t = c$. For every other regular singularity $t = c^\prime$ and a homotopy class of paths $\gamma$ joining $c^\prime$ and $c$, constants $\kappa_{\rho,n} = \kappa_{\rho,n} (\gamma)$ describe
-
Vafa–Witten invariants from modular anomaly Commun. Number Theory Phys. (IF 2.25) Pub Date : 2021-03-01 Sergei Alexandrov
Recently, a universal formula for a non-holomorphic modular completion of the generating functions of refined BPS indices in various theories with $N = 2$ supersymmetry has been suggested. It expresses the completion through the holomorphic generating functions of lower ranks. Here we show that for $U(N)$ Vafa–Witten theory on Hirzebruch and del Pezzo surfaces this formula can be used to extract the
-
A Cartesian diagram of Rapoport–Zink towers over universal covers of $p$-divisible groups Commun. Number Theory Phys. (IF 2.25) Pub Date : 2020-12-01 Hadi S. Mohammad Hedayatzadeh
In “J. Moduli of $p$-divisible groups” [9], Scholze and Weinstein show that a certain diagram of perfectoid spaces is Cartesian. In this paper, we generalize their result. This generalization will be used in a forthcoming paper of ours (“E. Cycles in the cohomology of Rapoport–Zink towers coming from the Lubin–Tate tower” [6]) to compute certain non-trivial $p$-adic étale cohomology classes appearing
-
K3 surfaces from configurations of six lines in $\mathbb{P}^2$ and mirror symmetry I Commun. Number Theory Phys. (IF 2.25) Pub Date : 2020-12-01 Shinobu Hosono; Bong H. Lian; Hiromichi Takagi; Shing-Tung Yau
From the viewpoint of mirror symmetry, we revisit the hypergeometric system $E(3, 6)$ for a family of K3 surfaces. We construct a good resolution of the Baily–Borel–Satake compactification of its parameter space, which admits special boundary points (LCSLs) given by normal crossing divisors. We find local isomorphisms between the $E(3, 6)$ systems and the associated GKZ systems defined locally on the
-
CHL Calabi–Yau threefolds: curve counting, Mathieu moonshine and Siegel modular forms Commun. Number Theory Phys. (IF 2.25) Pub Date : 2020-12-01 Jim Bryan; Georg Oberdieck
A CHL model is the quotient of $\mathrm{K}3 \times E$ by an order $N$ automorphism which acts symplectically on the $\mathrm{K}3$ surface and acts by shifting by an $N$-torsion point on the elliptic curve $E$. We conjecture that the primitive Donaldson–Thomas partition function of elliptic CHL models is a Siegel modular form, namely the Borcherds lift of the corresponding twisted-twined elliptic genera
-
Arithmetic and geometry of a K3 surface emerging from virtual corrections to Drell–Yan scattering Commun. Number Theory Phys. (IF 2.25) Pub Date : 2020-12-01 Marco Besier; Dino Festi; Michael Harrison; Bartosz Naskręcki
We study a K3 surface, which appears in the two-loop mixed electroweak-quantum chromodynamic virtual corrections to Drell–Yan scattering. A detailed analysis of the geometric Picard lattice is presented, computing its rank and discriminant in two independent ways: first using explicit divisors on the surface and then using an explicit elliptic fibration. We also study in detail the elliptic fibrations