当前期刊: Algebra & Number Theory Go to current issue    加入关注   
显示样式:        排序: IF: - GO 导出
我的关注
我的收藏
您暂时未登录!
登录
  • Moments of quadratic twists of elliptic curve L-functions over function fields
    Algebra Number Theory (IF 0.92) Pub Date : 2020-08-18
    Hung M. Bui; Alexandra Florea; Jonathan P. Keating; Edva Roditty-Gershon

    We calculate the first and second moments of L-functions in the family of quadratic twists of a fixed elliptic curve E over 𝔽q[x], asymptotically in the limit as the degree of the twists tends to infinity. We also compute moments involving derivatives of L-functions over quadratic twists, enabling us to deduce lower bounds on the correlations between the analytic ranks of the twists of two distinct

    更新日期:2020-09-18
  • Nonvanishing of hyperelliptic zeta functions over finite fields
    Algebra Number Theory (IF 0.92) Pub Date : 2020-08-18
    Jordan S. Ellenberg; Wanlin Li; Mark Shusterman

    Fixing t ∈ ℝ and a finite field 𝔽q of odd characteristic, we give an explicit upper bound on the proportion of genus g hyperelliptic curves over 𝔽q whose zeta function vanishes at 1 2 + it. Our upper bound is independent of g and tends to 0 as q grows.

    更新日期:2020-09-18
  • p-adic Asai L-functions of Bianchi modular forms
    Algebra Number Theory (IF 0.92) Pub Date : 2020-08-18
    David Loeffler; Chris Williams

    The Asai (or twisted tensor) L-function of a Bianchi modular form Ψ is the L-function attached to the tensor induction to ℚ of its associated Galois representation. When Ψ is ordinary at p we construct a p-adic analogue of this L-function: that is, a p-adic measure on ℤp× that interpolates the critical values of the Asai L-function twisted by Dirichlet characters of p-power conductor. The construction

    更新日期:2020-08-20
  • Pro-unipotent harmonic actions and dynamical properties of p-adic cyclotomic multiple zeta values
    Algebra Number Theory (IF 0.92) Pub Date : 2020-08-18
    David Jarossay

    p-adic cyclotomic multiple zeta values depend on the choice of a number of iterations of the crystalline Frobenius of the pro-unipotent fundamental groupoid of ℙ1 ∖{0,μN,∞}. In this paper we study how the iterated Frobenius depends on the number of iterations, in relation with the computation of p-adic cyclotomic multiple zeta values in terms of cyclotomic multiple harmonic sums. This provides new

    更新日期:2020-08-20
  • Nouvelles cohomologies de Weil en caractéristique positive
    Algebra Number Theory (IF 0.92) Pub Date : 2020-08-18
    Joseph Ayoub

    Soit K un corps valué de hauteur 1 et d’inégales caractéristiques (0,p), et soit k son corps résiduel. Dans cet article, nous construisons une nouvelle cohomologie de Weil pour les k-schémas de type fini à valeurs dans les AK-modules, avec AK une K-algèbre de « périodes abstraites p-adiques » qui admet une description explicite par générateurs et relations. Nous démontrons des théorèmes de comparaison

    更新日期:2020-08-20
  • Elliptic curves over totally real cubic fields are modular
    Algebra Number Theory (IF 0.92) Pub Date : 2020-08-18
    Maarten Derickx; Filip Najman; Samir Siksek

    We prove that all elliptic curves defined over totally real cubic fields are modular. This builds on previous work of Freitas, Le Hung and Siksek, who proved modularity of elliptic curves over real quadratic fields, as well as recent breakthroughs due to Thorne and to Kalyanswamy.

    更新日期:2020-08-20
  • Motivic Gauss–Bonnet formulas
    Algebra Number Theory (IF 0.92) Pub Date : 2020-08-18
    Marc Levine; Arpon Raksit

    The apparatus of motivic stable homotopy theory provides a notion of Euler characteristic for smooth projective varieties, valued in the Grothendieck–Witt ring of the base field. Previous work of the first author and recent work of Déglise, Jin and Khan established a motivic Gauss–Bonnet formula relating this Euler characteristic to pushforwards of Euler classes in motivic cohomology theories. We apply

    更新日期:2020-08-20
  • Burgess bounds for short character sums evaluated at forms
    Algebra Number Theory (IF 0.92) Pub Date : 2020-08-18
    Lillian B. Pierce; Junyan Xu

    We establish a Burgess bound for short multiplicative character sums in arbitrary dimensions, in which the character is evaluated at a homogeneous form that belongs to a very general class of “admissible” forms. This n-dimensional Burgess bound is nontrivial for sums over boxes of sidelength at least qβ, with β > 1∕2 − 1∕(2(n + 1)). This is the first Burgess bound that applies in all dimensions to

    更新日期:2020-08-20
  • Galois action on the principal block and cyclic Sylow subgroups
    Algebra Number Theory (IF 0.92) Pub Date : 2020-08-18
    Noelia Rizo; A. A. Schaeffer Fry; Carolina Vallejo

    We characterize finite groups G having a cyclic Sylow p-subgroup in terms of the action of a specific Galois automorphism on the principal p-block of G, for p = 2,3. We show that the analog statement for blocks with arbitrary defect group would follow from the blockwise McKay–Navarro conjecture.

    更新日期:2020-08-20
  • Abelian extensions in dynamical Galois theory
    Algebra Number Theory (IF 0.92) Pub Date : 2020-08-18
    Jesse Andrews; Clayton Petsche

    We propose a conjectural characterization of when the dynamical Galois group associated to a polynomial is abelian, and we prove our conjecture in several cases, including the stable quadratic case over ℚ. In the postcritically infinite case, the proof uses algebraic techniques, including a result concerning ramification in towers of cyclic p-extensions. In the postcritically finite case, the proof

    更新日期:2020-08-20
Contents have been reproduced by permission of the publishers.
导出
全部期刊列表>>
物理学研究前沿热点精选期刊推荐
科研绘图
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
清华大学
廖矿标
陈永胜
试剂库存
down
wechat
bug