当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interfacial engineering of a ZnO electron transporting layer using self-assembled monolayers for high performance and stable perovskite solar cells†
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2019-12-24 , DOI: 10.1039/c9ta12750j
Jinyoung Han 1, 2, 3, 4 , Hannah Kwon 1, 2, 3, 4 , Eunah Kim 2, 3, 4, 5 , Dong-Wook Kim 2, 3, 4, 5 , Hae Jung Son 4, 6, 7, 8 , Dong Ha Kim 1, 2, 3, 4, 9
Affiliation  

We developed perovskite solar cells (PSCs) with a ZnO electron-transporting layer (ETL) of which the surface was passivated with methoxybenzoic acid self-assembled monolayers (SAMs). The self-assembled monolayer (SAM) simultaneously improved the photovoltaic performance and device stability. First, the methoxybenzoic acid, which is noncovalently bonded to the methylammonium of the perovskite layer, effectively induced dipole moments; in particular, 3,4,5-trimethoxybenzoic acid (TMBA) gave a larger workfunction shift of ZnO ETL compared with 4-methoxybenzoic acid (MBA) and 3,4-dimethoxybenzoic acid (DMBA) owing to its strong dipole moment and hydrogen-bonding between the methoxy group and ammonium. This effectively enhanced the built-in voltage of the perovskite solar cell (PSC) device, which resulted in an improved electron transfer from the active layer to the ETL and a higher open-circuit voltage. Secondly, the SAM layer controlled the wettability of the perovskite precursor solution on the ZnO ETL and significantly improved the crystalline properties of the perovskite layer. Moreover, the ZnO/SAM ETL remarkably increased the PSC device stability under ambient conditions by preventing the proton transfer reaction between the perovskite layer and the ZnO ETL. As a result, the TMBA-SAM based PSC device achieved a significantly enhanced efficiency of 13.75% compared to 1.44% for the bare ZnO with high long-term stability.

中文翻译:

使用自组装单层的ZnO电子传输层的界面工程,用于高性能和稳定的钙钛矿太阳能电池

我们开发了具有ZnO电子传输层(ETL)的钙钛矿太阳能电池(PSC),其表面被甲氧基苯甲酸自组装单分子层(SAMs)钝化。自组装单层(SAM)同时提高了光伏性能和器件稳定性。首先,与钙钛矿层的甲基铵非共价键合的甲氧基苯甲酸有效地诱导了偶极矩。特别是3,4,5-三甲氧基苯甲酸(TMBA)的ZnO ETL的功函数位移比4-甲氧基苯甲酸(MBA)和3,4-二甲氧基苯甲酸(DMBA)大,这归因于其强大的偶极矩和氢-甲氧基和铵之间的键合。这有效地提高了钙钛矿太阳能电池(PSC)装置的内置电压,从而改善了电子从有源层到ETL的转移,并提高了开路电压。其次,SAM层控制了钙钛矿前体溶液在ZnO ETL上的润湿性,并显着提高了钙钛矿层的结晶性能。此外,ZnO / SAM ETL通过防止钙钛矿层与ZnO ETL之间的质子转移反应,在环境条件下显着提高了PSC器件的稳定性。结果,与具有高长期稳定性的裸露ZnO相比,基于TMBA-SAM的PSC器件的效率显着提高了13.75%,而相比之下,裸ZnO的效率为1.44%。SAM层控制了钙钛矿前体溶液在ZnO ETL上的润湿性,并显着改善了钙钛矿层的结晶性能。此外,ZnO / SAM ETL通过防止钙钛矿层与ZnO ETL之间的质子转移反应,在环境条件下显着提高了PSC器件的稳定性。结果,与具有高长期稳定性的裸露ZnO相比,基于TMBA-SAM的PSC器件的效率显着提高了13.75%,而相比之下,裸ZnO的效率为1.44%。SAM层控制了钙钛矿前体溶液在ZnO ETL上的润湿性,并显着提高了钙钛矿层的结晶性能。此外,ZnO / SAM ETL通过防止钙钛矿层与ZnO ETL之间的质子转移反应,在环境条件下显着提高了PSC器件的稳定性。结果,与具有高长期稳定性的裸露ZnO相比,基于TMBA-SAM的PSC器件的效率显着提高了13.75%,而裸氧化锌的效率为1.44%。
更新日期:2020-01-09
down
wechat
bug