当前位置: X-MOL 学术J. Nanopart. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Insight on nano-platinum-catalyzed dehydrogenation of quercetin in presence of peroxide
Journal of Nanoparticle Research ( IF 2.1 ) Pub Date : 2019-12-14 , DOI: 10.1007/s11051-019-4712-1
Ranendu Sekhar Das , Bula Singh

Quercetin (Qu), a noted polyphenolic flavonol molecule, exhibits remarkable antioxidant properties against bioenzymes like peroxidase and tyrosinase. However, it was found that under pH = 3.5–5.5 and room temperature, Qu cannot reduce hydrogen peroxide (HP) which is a well-perceived reactive oxygen species (ROS) responsible for oxidative stress. We found that in presence of noble-metal nano-particles, such redox interactions can be accomplished. We thus synthesized homogenous PVP-coated nano-platinum particles (PNP) to catalyze the oxidation of Qu by HP. On reaction, Qu is oxidized by HP to ortho-quinone (QQ) following the first-order kinetics. The observed rate constant, ko, gradually increases and tends to saturate with increasing [HP]T where T represents the analytical concentrations of the reactant. The saturation kinetics indicates that the activities of PNP resemble to that of bioenzymes and similarly, the nano-particles host the reactants on its active surface during the redox interactions. The estimated value of the kcat reveals that the extent of catalysis of even 10−10 M PNP is nearly comparable with the rate constants of oxidation of Qu in presence of enzymes like horseradish peroxidase and tyrosinase.

Quercetin (Qu) is a ubiquitous natural antioxidant. However, in acidic buffer media (pH = 3.5–5.5), hydrogen peroxide (HP) cannot oxidize Qu. Strikingly, in presence of nano-platinum particles (PNP), Qu is promptly oxidized by HP to ortho-quinone following the first-order kinetics. PNP hosts the reactants on its active surface during the redox interactions. The saturation kinetics with respect to HP resembles to enzyme-like activities of PNP, and indeed, the calculated value of the rate constant, kcat, is comparable with those of the rate constants of enzyme-mediated oxidation of Qu.



中文翻译:

在过氧化物存在下对槲皮素的纳米铂催化脱氢的见解

槲皮素(Qu)是一种著名的多酚类黄酮醇分子,对过氧化物酶和酪氨酸酶等生物酶表现出显着的抗氧化性能。但是,发现在pH = 3.5-5.5和室温下,Qu不能还原过氧化氢(HP),过氧化氢是引起氧化应激的公认的活性氧(ROS)。我们发现,在存在贵金属纳米颗粒的情况下,可以实现这种氧化还原相互作用。因此,我们合成均质PVP涂覆纳米铂粒子(PNP)催化的氧化HP。反应时,QuHP氧化为邻醌(QQ)遵循一级动力学。观察到的速率常数k o随着[ HP ] T的增加而逐渐增加并趋于饱和,其中T表示反应物的分析浓度。饱和动力学表明PNP的活性类似于生物酶的活性,并且类似地,在氧化还原相互作用期间,纳米颗粒在其活性表面上容纳反应物。k cat的估计值表明,即使10 -10 M PNP的催化程度也几乎与Qu的氧化速率常数相当 存在诸如辣根过氧化物酶和酪氨酸酶之类的酶。

槲皮素(Quercetin(Qu))是一种普遍存在的天然抗氧化剂。但是,在酸性缓冲液(pH = 3.5–5.5)中,过氧化氢(HP)不能氧化Qu。令人惊讶的是,在存在纳米铂粒子(PNP)的情况下,Qu会按照一级动力学迅速被HP氧化为邻醌。在氧化还原相互作用期间,PNP将反应物承载在其活性表面上。关于HP的饱和动力学类似于PNP的酶样活性,实际上是速率常数k cat的计算值与酶介导的Qu的氧化速率常数相当。

更新日期:2019-12-14
down
wechat
bug