Skip to main content
Log in

Insight on nano-platinum-catalyzed dehydrogenation of quercetin in presence of peroxide

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Quercetin (Qu), a noted polyphenolic flavonol molecule, exhibits remarkable antioxidant properties against bioenzymes like peroxidase and tyrosinase. However, it was found that under pH = 3.5–5.5 and room temperature, Qu cannot reduce hydrogen peroxide (HP) which is a well-perceived reactive oxygen species (ROS) responsible for oxidative stress. We found that in presence of noble-metal nano-particles, such redox interactions can be accomplished. We thus synthesized homogenous PVP-coated nano-platinum particles (PNP) to catalyze the oxidation of Qu by HP. On reaction, Qu is oxidized by HP to ortho-quinone (QQ) following the first-order kinetics. The observed rate constant, ko, gradually increases and tends to saturate with increasing [HP]T where T represents the analytical concentrations of the reactant. The saturation kinetics indicates that the activities of PNP resemble to that of bioenzymes and similarly, the nano-particles host the reactants on its active surface during the redox interactions. The estimated value of the kcat reveals that the extent of catalysis of even 10−10 M PNP is nearly comparable with the rate constants of oxidation of Qu in presence of enzymes like horseradish peroxidase and tyrosinase.

Quercetin (Qu) is a ubiquitous natural antioxidant. However, in acidic buffer media (pH = 3.5–5.5), hydrogen peroxide (HP) cannot oxidize Qu. Strikingly, in presence of nano-platinum particles (PNP), Qu is promptly oxidized by HP to ortho-quinone following the first-order kinetics. PNP hosts the reactants on its active surface during the redox interactions. The saturation kinetics with respect to HP resembles to enzyme-like activities of PNP, and indeed, the calculated value of the rate constant, kcat, is comparable with those of the rate constants of enzyme-mediated oxidation of Qu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdullah AA, Yardım Y, Şentürk Z (2018) Talanta 187:156–164

    CAS  Google Scholar 

  • Awad HM, Boersma MG, Vervoort J, Rietjens IMCM (2000) Archives of Biochemistry and Biophysics 378:224–233

    CAS  Google Scholar 

  • Barreto CH, Santiago VR, Mazzetto SE, Denardin JC, Lavın R, Mele G, Ribeiro MENP, Vieira IGP, Goncalves T, Ricardo NMPS, Fechine PBA (2011) J Nanopart Res 13:6545–6553

    CAS  Google Scholar 

  • Barsukova ME, Tokareva AI, Buslova TS, Malinina LI, Veselova IA, Shekhovtsova TN (2017) Applied Biochemistry and Microbiology 53:149–156

    CAS  Google Scholar 

  • Berger S, Rieker A. (1974) Identification and determination of quinones. In The Chemistry of the Quinonoid Compounds, part 1, Vol. 1 (ed. S. Patai), Wiley, New York.

  • Bockris JO, Oldfield LF (1955) Trans. Faraday Soc., 51:249–259.

  • Bondzic AM, Lazarevic-Pasti TD, Bondzic BP, Colovic MB, Jadranin MB, Vasic VM (2013) New J. Chem. 37:901–908

    CAS  Google Scholar 

  • Boots AW, Kubben N, Haenen G, Bast A (2003) Biochem. Biophys. Res. Commun. 308:560–565

    CAS  Google Scholar 

  • Brown JE, Khodr H, Hider RC, Rice-Evans CA (1998) Biochem. J. 330:1173–1178

    CAS  Google Scholar 

  • Bukhari SB, Memon S, Mahroof-Tahir M, Bhanger MI (2009) Spectrochim Acta A 71:1901–1906

    Google Scholar 

  • Çelik N, Vurmaz A, Kahraman A (2017) Nutrition 33:291–296

    Google Scholar 

  • Costa LG, Garrick JM, Roquè PJ, Pellacani C (2016) Oxidative Medicine and Cellular Longevity. Article ID 2986796. https://doi.org/10.1155/2016/2986796

    Google Scholar 

  • Das RS, Singh B, Mukhopadhyay S, Banerjee R (2012) Dalton Trans. 41:4641–4648

    CAS  Google Scholar 

  • Das RS, Singh B, Mukhopadhyay S, Banerjee R (2013) Dalton Transactions 42:4068–4080

    CAS  Google Scholar 

  • de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF (2016) Biotechnology Advances 34:532–549

    Google Scholar 

  • Diamantis DA, Ramesova S, Chatzigiannis CM, Degano I, Gerogianni PS, Karadima C, Perikleous S, Rekkas D, Gerothanassis IP, Galaris D, Mavromoustakos T, Valsami G, Sokolova R, Tzakos AG (2018) Biochim Biophys Acta Gen Subj. 1862:1913–1924

    CAS  Google Scholar 

  • Duranti G, Ceci R, Patrizio F, Sgrò P, Luigi LD, Sabatini S, Felici F, Bazzucchi I (2018) NUTRITIONRE SEARCH 50:73–81

    CAS  Google Scholar 

  • Eris S, Daşdelen Z, Sen F (2017) Journal of Colloid and Interface Science 513:767–773

    Google Scholar 

  • Evans MG, Uri N (1949) Trans. Faraday Soc. 45:224–230

    CAS  Google Scholar 

  • Fahlman BM, Krol ES (2009) J. Agric. Food Chem. 57:5301–5305

    CAS  Google Scholar 

  • Fenoll LG, Garciäa-Ruiz PA, Varoä RN, Garciäa-Caänovas F (2003) J. Agric. Food Chem. 51:7781–7787

    CAS  Google Scholar 

  • Foti MC, Daquino C, DiLabio GA, Ingold KU (2011) Org. Lett. 13:4826–4829

    CAS  Google Scholar 

  • Geetha T, Malhotra V, Chopra K, Kaur IP (2005) Indian Journal of Experimental Biology 43:61–67

    CAS  Google Scholar 

  • Greenwood NN, Earnshaw E (1998) Chemistry of the elements. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Gulsen A, Turan B, Makris DP, Kefalas P (2007) Eur Food Res Technol. 225:435–441

    Google Scholar 

  • Gupta A, Birhman K, Raheja I, Sharma SK, Kar HK (2016) Asian Pac J Trop Dis 6:248–252

    CAS  Google Scholar 

  • Han BC, Miranda CR, Ceder G (2008) Physical Review B. https://doi.org/10.1103/PhysRevB.77.075410

  • Hatahet T, Morille M, Hommoss A, Devoisselle JM, Müller RH, Bégu S (2016) European Journal of Pharmaceutics and Biopharmaceutics 108:41–53

    CAS  Google Scholar 

  • Hatahet T, Morille M, Shamseddin A, Aubert-Pouessel A, Devoisselle JM, Begu S (2018) International Journal of Pharmaceutics19:263.

  • Hatahet T, Morille M, Shamseddin A, Aubert-Pouëssel A, Devoisselle JM, Bégu S (2017) International Journal of Pharmaceutics 518:167–176

    CAS  Google Scholar 

  • Hirota S, Nishioka T, Shimoda T, Miura K, Znsai T, Takahama U (2001) Food Sci. Technol. Res.7:239–245.

  • Hodaka S, Komatsu-Watanabe R, Ideguchi T, Sakamoto S, Ichimori K, Kanaori K, Tajima K (2007) Chemistry Letters 36:1388–1389

    CAS  Google Scholar 

  • Jimenez M, Garcıa-Carmona F (1999) Journal of Agricultural and Food Chemistry 947:56–60

    Google Scholar 

  • Jorgensen LV, Cornett C, Justesen U, Skibsted LH, Dragsted LO (1998) Free Rad. Res 29:339–350

    CAS  Google Scholar 

  • Jungbluth G, Rühling I, Ternes W (2000) J. Chem. Soc. Perkin Trans. 2:1946–1952

    Google Scholar 

  • Kopacz M, Kopacz S, Skuba E (2004) Russian Journal of General Chemistry 74:957–959

    CAS  Google Scholar 

  • Krishnamachari V, Levine LH, Pare PW, Agric J (2002) Food Chem. 50:4357–4363

    CAS  Google Scholar 

  • Kurepa J, Shull TE, Smalle JA (2016) F1000Research 5:2430.

  • Lopez-Lopez G, Moreno L, Cogolludo A, Galisteo M, Ibarra M, Duarte J, Lodi F, Tamargo J, Perez-Vizcaino F (2004) Mol Pharmacol 65:851–859

    CAS  Google Scholar 

  • Makris DP, Rossiter JT (2002a) Food Chemistry 77:177–185

    CAS  Google Scholar 

  • Makris DP, Rossiter JT (2002b) J. Food Composition And Analysis 15:103–113

    CAS  Google Scholar 

  • Mandal A, Das RS, Singh B, Banerjee R, Mukhopadhyay S (2017) Journal of Coordination Chemistry 70:1723–1738

    CAS  Google Scholar 

  • Maria A, Brett O, Ghica M-E (2003) Electroanalysis 15:1745–1750

    Google Scholar 

  • Momic T, Savic J, Vasic V (2009) Research Letters in Physical Chemistry. Article ID 614362. https://doi.org/10.1155/2009/614362

    Google Scholar 

  • Mondal T, Pal S, Dey SK (2017) TBAP 7:200–213

    CAS  Google Scholar 

  • Narayanan R, El-Sayed MA (2003) J. Phys. Chem. B 107:12416–12424

    CAS  Google Scholar 

  • Pekal A, Biesaga M, Pyrzynska K (2011) Biometals 24:41–49

    CAS  Google Scholar 

  • Perrin DD, Buffers for pH and Metal Ion Control (1974) Chapman and Hall Ltd., page 134. Table 10(18)

  • Sauerwalda N, Schwenka M, Polster J, Bengschb E (1998) Zeitschrift für Naturforschung B 53:315–321

    Google Scholar 

  • Savic SR, Petronijevic ZB (2013) Indian Journal of Biochemistry & Biophysics 50:221–226

    CAS  Google Scholar 

  • Schmid G (1992) Chem. Rev. 92:1709–1727

    CAS  Google Scholar 

  • Sen B, Şavk A, Sen F (2017) Journal of Colloid and Interface Science 520:112–118

    Google Scholar 

  • Shoshan MS, Li M, Vonderach T, Wennemers H (2019) ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.9170798.v2

  • Silva W, Torres-Gatica MF, Oyarzun-Ampuero F, Silva-Weiss A, Robert P, Cofrades S, Giménez B (2018) Food Chemistry 253:71–78

    CAS  Google Scholar 

  • Singh B, Das RS, Banerjee R, Mukhopadhyay S (2013) Inorganica Chimica Acta 406:266–271

    CAS  Google Scholar 

  • Sokolova R, Ramesova S, Degano I, Hromadova M, Gal M, Zabka J (2012) Chem. Commun. 48:3433–3435

    CAS  Google Scholar 

  • Song YJ, Dorin RM, Garcia RM, Jiang YB, Wang HR, Li P, Qiu Y, Swol F, Miller JE, Shelnutt JA (2008) J. Am. Chem. Soc. 130:12602–12603

    CAS  Google Scholar 

  • Song YJ, Jiang YB, Wang HR, Pena DA, Qiu Y, Miller JE, Shelnutt JA (2006) Nanotechnology 17:1300–1308

    CAS  Google Scholar 

  • Sun L, Wang K, Xu X, Ge M, Chen Y, Hu F (2017) Hindawi, Evidence-Based Complementary and Alternative Medicine. Article ID 7074147, https://doi.org/10.1155/2017/7074147.

    Google Scholar 

  • Timbola AK, de Souza CD, Giacomelli C, Spinelli A, Braz J (2006) Chem. Soc.17:139148.

  • Wang L, Hu C, Nemoto Y, Tateyama Y, Yamauchi Y (2010) Cryst. Growth & Des. 10:3454–3460

    CAS  Google Scholar 

  • Wang L, Yamauchi Y (2009) J. Am. Chem. Soc. 131:9152–9153

    CAS  Google Scholar 

  • Xu G, In MY, Yuan Y, Lee J, Kim S (2007) Bull. Korean Chem. Soc. 28:889–892

    CAS  Google Scholar 

  • Yang B, Arai K, Kusu F (2001) Analytical Sciences 17:987–989

    CAS  Google Scholar 

  • Yu S, Cui Y, Guo X, Chen S, Sun H, Wang L, Wang J, Zhao Y, Liua Z (2019) New J. Chem. 43:8774–8780

    CAS  Google Scholar 

  • Zare HR, Namazian M, Nasirizadeh N (2005) Journal of Electroanalytical Chemistry 584:77–83

    CAS  Google Scholar 

  • Zhou A, Kikandi S, Sadik OA (2007) Electrochemistry Communications 9:2246–2255

    CAS  Google Scholar 

  • Zhou A, Sadik OA (2008) J. Agric. Food Chem. 56:12081–12091

    CAS  Google Scholar 

  • Zizkova P, Stefek M, Rackova L, Prnova M (2017) Horakova L. Chemico-biological Interactions 265:36–46

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranendu Sekhar Das.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R.S., Singh, B. Insight on nano-platinum-catalyzed dehydrogenation of quercetin in presence of peroxide. J Nanopart Res 21, 273 (2019). https://doi.org/10.1007/s11051-019-4712-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4712-1

Keywords

Navigation