当前位置: X-MOL 学术Catal. Surv. Asia › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanistic Study of Catalase- and Superoxide Dismutation-Mimic Activities of Cobalt Oxide Nanozyme from First-Principles Microkinetic Modeling
Catalysis Surveys from Asia ( IF 2.1 ) Pub Date : 2019-12-03 , DOI: 10.1007/s10563-019-09290-4
Sibei Guo , Yu Han , Ling Guo

Cobalt oxide (Co3O4) has attracted considerable interest because of its high catalytic activity, especially for intrinsic catalase (CAT)-mimic and superoxide dismutation (SOD)-mimic activities. However, understanding of its catalytic mechanism from atomic or molecular level remains limited. Here, we propose base-like dissociative, acid-like dissociative and bi-hydrogen peroxide associative mechanisms of CAT-mimic activity, Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms of SOD-mimic activity on cobalt oxide surface with atomistic thermodynamic and kinetic details by a combination of rigorous density functional theory and microkinetic modeling. The catalytic activity of Co3O4 depends strongly on their size and structure. In this study, Co3O4 nanozyme with different size and structure exhibited different catalytic activities in the order of (Co3O4)2 > (Co3O4)3 > Co3O4. This order is closely related to their weak, tunable Co–O bonds. Our microkinetic modeling analysis shows that bi-hydrogen peroxide associative mechanisms (mechanism C) of CAT-mimic activity and ER mechanism of SOD-mimic activity for (Co3O4)2 are favorable, which is identified by the rate-determining steps (RDS), Energy span model (ESM), and microkinetic modeling analysis. For the CAT-mimic activities on (Co3O4)n surface, Campbell’s degree of rate control analysis indicates the key to catalyst improvement and design is to stabilize the key steps, which are related to the formation of H2O molecular. For the SOD-mimic activities of (Co3O4)n, we find the formation of H2O2 molecular to be the sole rate-controlling step. Degree of the thermodynamic rate control analysis reveals that the stronger H2O2*, OH* binding would facilitate the reaction of CAT-like activities of (Co3O4)n. And the adsorbed OHOO* with large negative degree of thermodynamic rate control would inhibit the reaction of CAT-like activities of (Co3O4)n. Our results have not only provided new insights into deciphering (Co3O4)n artificial enzymes, but will also facilitate the design and construction of other types of target-specific artificial enzymes.



中文翻译:

基于第一性原理微动力学模型的氧化钴纳米酶过氧化氢酶和超氧化物歧化模拟活性的机理研究

氧化钴(Co 3 O 4)由于其高催化活性而引起了极大的兴趣,特别是对于内在过氧化氢酶(CAT)模拟和超氧化物歧化(SOD)模拟活性。但是,从原子或分子水平理解其催化机理仍然有限。在这里,我们提出了类似CAT的模拟活性的类似碱的离解,类似酸的离解和双氢过氧化物的缔合机制,对于氧化钴表面上的SOD模仿活性的Langmuir-Hinshelwood(LH)和Eley-Rideal(ER)机理通过严格的密度泛函理论和微动力学建模相结合,获得原子热力学和动力学细节。Co 3 O 4的催化活性很大程度上取决于它们的大小和结构。在这项研究中,具有不同大小和结构的Co 3 O 4纳米酶以(Co 3 O 42  >(Co 3 O 43  > Co 3 O 4的顺序表现出不同的催化活性。此顺序与它们的弱且可调的Co-O键密切相关。我们的微动力学模型分析表明,(Co 3 O 42的CAT模拟活性的双氢过氧化物缔合机理(机理C)和SOD模拟活性的ER机理通过速率确定步骤(RDS),能量跨度模型(ESM)和微动力学模型分析可以确定这种方法是有利的。对于(Co 3 O 4n表面上的CAT模拟活性,坎贝尔速率控制分析的程度表明催化剂改进的关键,而设计是稳定与H 2 O分子形成有关的关键步骤。对于(Co 3 O 4n的SOD模拟活性,我们发现H 2 O 2分子的形成是唯一的速率控制步骤。热力学速率控制分析的程度表明,H 2 O 2越强*,OH *的结合将促进(Co 3 O 4n的CAT类活性的反应。而且,吸附的OHOO *具有较大的负热力学速率控制能力,会抑制(Co 3 O 4n的类CAT活性反应。我们的结果不仅为破译(Co 3 O 4n人造酶提供了新的见识,而且还将促进其他类型的目标特异性人造酶的设计和构建。

更新日期:2020-04-20
down
wechat
bug