Skip to main content
Log in

Mechanistic Study of Catalase- and Superoxide Dismutation-Mimic Activities of Cobalt Oxide Nanozyme from First-Principles Microkinetic Modeling

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Cobalt oxide (Co3O4) has attracted considerable interest because of its high catalytic activity, especially for intrinsic catalase (CAT)-mimic and superoxide dismutation (SOD)-mimic activities. However, understanding of its catalytic mechanism from atomic or molecular level remains limited. Here, we propose base-like dissociative, acid-like dissociative and bi-hydrogen peroxide associative mechanisms of CAT-mimic activity, Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms of SOD-mimic activity on cobalt oxide surface with atomistic thermodynamic and kinetic details by a combination of rigorous density functional theory and microkinetic modeling. The catalytic activity of Co3O4 depends strongly on their size and structure. In this study, Co3O4 nanozyme with different size and structure exhibited different catalytic activities in the order of (Co3O4)2 > (Co3O4)3 > Co3O4. This order is closely related to their weak, tunable Co–O bonds. Our microkinetic modeling analysis shows that bi-hydrogen peroxide associative mechanisms (mechanism C) of CAT-mimic activity and ER mechanism of SOD-mimic activity for (Co3O4)2 are favorable, which is identified by the rate-determining steps (RDS), Energy span model (ESM), and microkinetic modeling analysis. For the CAT-mimic activities on (Co3O4)n surface, Campbell’s degree of rate control analysis indicates the key to catalyst improvement and design is to stabilize the key steps, which are related to the formation of H2O molecular. For the SOD-mimic activities of (Co3O4)n, we find the formation of H2O2 molecular to be the sole rate-controlling step. Degree of the thermodynamic rate control analysis reveals that the stronger H2O2*, OH* binding would facilitate the reaction of CAT-like activities of (Co3O4)n. And the adsorbed OHOO* with large negative degree of thermodynamic rate control would inhibit the reaction of CAT-like activities of (Co3O4)n. Our results have not only provided new insights into deciphering (Co3O4)n artificial enzymes, but will also facilitate the design and construction of other types of target-specific artificial enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singh R, Singh S (2019) Colloids Surf B 175:625–635

    Article  CAS  Google Scholar 

  2. Bhagat S, Srikanth Vallabani NV, Shutthanandan V, Bowden M, Karakoti AS, Singh S (2018) J Colloid Interface Sci 513:831–842

    Article  CAS  PubMed  Google Scholar 

  3. Singh S (2019) Front Chem 7:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Halliwell B, Gutteridge JMC (1990) Method Enzymol 186:1–85

    Article  CAS  Google Scholar 

  5. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Nat Rev Mol Cell Bio 8:722–728

    Article  CAS  Google Scholar 

  6. Brioukhanov A, Netrusov A (2004) Biochemistry (Moscow) 69:949–962

    Article  CAS  Google Scholar 

  7. Su H, Liu DD, Zhao M, Hu WL, Xue SS, Cao Q, Le XY, Ji LN, Mao ZW (2015) ACS Appl Mater Interfaces 7:8233–8242

    Article  CAS  PubMed  Google Scholar 

  8. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  9. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496–499

    Article  CAS  PubMed  Google Scholar 

  10. Hutchins MG, Wright PJ, Grebenik PD (1987) Sol Energy Mater 16:113–116

    Article  CAS  Google Scholar 

  11. Li WY, Xu LN, Chen J (2005) Adv Funct Mater 15:851–857

    Article  CAS  Google Scholar 

  12. Maruyama T, Arai S (1996) J Electrochem Soc 143:1383–1388

    Article  CAS  Google Scholar 

  13. Jiang DE, Dai S (2011) Phys Chem Chem Phys 13:978–984

    Article  CAS  PubMed  Google Scholar 

  14. Tao FF, Shan JJ, Nguyen L, Wang Z, Zhang S, Zhang L, Wu Z, Huang W, Zeng S, Hu P (2015) Nat Commun 6:7798

    Article  CAS  PubMed  Google Scholar 

  15. Tyo EC, Yin C, Di Vece M, Qian Q, Kwon G, Lee S, Lee B, DeBartolo JE, Seifert S, Winans RE, Si R, Ricks B, Goergen S, Rutter M, Zugic B, Flytzani-Stephanopoulos M, Wang ZW, Palmer RE, Neurock M, Vajda S (2012) ACS Catal 2:2409–2423

    Article  CAS  Google Scholar 

  16. Fung V, Tao F, Jiang D (2016) Catal Sci Technol 6:6861–6869

    Article  CAS  Google Scholar 

  17. Zhang S, Shan JJ, Zhu Y, Frenkel AI, Patlolla A, Huang W, Yoon SJ, Wang L, Yoshida H, Takeda S, Tao F (2013) J Am Chem Soc 135:8283–8293

    Article  CAS  PubMed  Google Scholar 

  18. Xie XW, Li Y, Liu ZQ, Haruta M, Shen WJ (2009) Nature 458:746–749

    Article  CAS  PubMed  Google Scholar 

  19. Mu J, Wang Y, Zhao M, Zhang L (2012) Chem Commun 48:2540–2542

    Article  CAS  Google Scholar 

  20. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Nat Nanotechnol 2:577–583

    Article  CAS  PubMed  Google Scholar 

  21. Mu J, Li J, Zhao X, Yang E, Zhao X (2018) Sens Actuators B 258:32–41

    Article  CAS  Google Scholar 

  22. Yin J, Cao H, Lu Y (2012) J Mater Chem 22:527–534

    Article  CAS  Google Scholar 

  23. Mu J, Zhang L, Zhao M, Wang Y (2014) ACS Appl Mater Interfaces 6:7090–7099

    Article  CAS  PubMed  Google Scholar 

  24. Mu J, Zhang L, Zhao M, Wang Y (2014) Phys Chem Chem Phys 16:15709–15716

    Article  CAS  PubMed  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2009) Gaussian 09, Revision A.1, Gaussian, Wallingford, CT

  27. Jirkovsky JS, Busch M, Ahlberg E, Panas I, Krtil P (2011) J Am Chem Soc 133:5882–5892

    Article  CAS  PubMed  Google Scholar 

  28. Liu X, Prewitt CT (1990) Phys Chem Miner 17:168–172

    Article  CAS  Google Scholar 

  29. Selcuk S, Selloni A (2015) J Phys Chem C 119:9973–9979

    Article  CAS  Google Scholar 

  30. Lide DR (2003) Handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  31. Piskorz W, Zasada F, Stelmachowski P, Kotarba A, Sojka Z (2008) Catal Today 137:418–422

    Article  CAS  Google Scholar 

  32. Shojaee K, Montoya A, Haynes BS (2013) Comput Mater Sci 72:15–25

    Article  CAS  Google Scholar 

  33. Guo R, Wang H, Peng C, Shen M, Pan M, Cao X, Zhang G, Shi X (2010) J Phys Chem C 114:50–56

    Article  CAS  Google Scholar 

  34. Amatore C, Jutand A (1999) J Organomet Chem 576:254–278

    Article  CAS  Google Scholar 

  35. Kozuch S, Shaik S (2006) J Am Chem Soc 128:3355–3365

    Article  CAS  PubMed  Google Scholar 

  36. Ma L, Melander M, Weckman T, Laasonen K, Akola J (2016) J Phys Chem C 120:26747–26758

    Article  CAS  Google Scholar 

  37. Wynne-Jones WFK, Eyring H (1935) J Chem Phys 3:492–502

    Article  CAS  Google Scholar 

  38. Slesak I, Lesak HS, Zimak-Piekarczyk P, Rozp-ądek P (2016) Astrobiology 16:348–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang W, Hu S, Yin JJ, He W, Lu W, Ma M, Gu N, Zhang Y (2016) J Am Chem Soc 138:5860–5865

    Article  CAS  PubMed  Google Scholar 

  40. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  41. Wang W, Wang Y, Wang G (2018) Phys Chem Chem Phys 20:2492–2507

    Article  CAS  PubMed  Google Scholar 

  42. Kozuch S, Shaik S (2011) Acc Chem Res 44:101–110

    Article  CAS  PubMed  Google Scholar 

  43. Mishra PC, Singh AK, Suhai S (2005) Int J Quantum Chem 102:282–301

    Article  CAS  Google Scholar 

  44. Haraguchi H, Ishikawa H, Mizutani K, Tamura Y, Kinoshita T (1998) Med Chem 6:339–347

    CAS  Google Scholar 

  45. Lin WS, Armstrong DA, Lal M (1978) Int J Radiat Bio 33:231–243

    CAS  Google Scholar 

  46. Bielski BHJ, Cabelli DE, Arudi RL, Ross AB (1985) J Phys Chem Ref Data 14:1041

    Article  CAS  Google Scholar 

  47. Weinberg WH (1996) Acc Chem Res 29:479–487

    Article  CAS  Google Scholar 

  48. Campbell CT (2017) ACS Catal 7:2770–2779

    Article  CAS  Google Scholar 

  49. Stegelmann C, Andreasen A, Campbell CT (2009) J Am Chem Soc 131:8077–8082

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “1331” project of Shanxi Province, High School 131 Leading Talent Project of Shanxi, the Natural Science Foundation of Shanxi, and Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province, Graduate student Innovation Project of Shanxi Normal University, Shanxi Graduate Education Innovation Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Han, Y. & Guo, L. Mechanistic Study of Catalase- and Superoxide Dismutation-Mimic Activities of Cobalt Oxide Nanozyme from First-Principles Microkinetic Modeling. Catal Surv Asia 24, 70–85 (2020). https://doi.org/10.1007/s10563-019-09290-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-019-09290-4

Keywords

Navigation