当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The energy cost and optimal design for synchronization of coupled molecular oscillators.
Nature Physics ( IF 17.6 ) Pub Date : 2019-11-11 , DOI: 10.1038/s41567-019-0701-7
Dongliang Zhang 1 , Yuansheng Cao 2 , Qi Ouyang 1, 3 , Yuhai Tu 4
Affiliation  

A model of coupled molecular biochemical oscillators is proposed to study non-equilibrium thermodynamics of synchronization. Under general considerations, we find that chemical interactions within an ensemble of autonomous oscillators break detailed balance and thus cost energy. This extra energy cost, in addition to the energy dissipated for driving each individual oscillator, is necessary to power the coupling interactions such as oscillator–oscillator exchange reactions, which are responsible for correcting the phase error in each individual noisy oscillator with respect to the collective oscillation of the whole ensemble. By solving the steady-state distribution of the many-oscillator system analytically and numerically, we show that the system reaches its synchronized state through a non-equilibrium phase transition as energy dissipation increases. The critical energy dissipation per period depends on both the frequency and strength of the exchange reaction, which reveals an optimal (efficient) design for achieving maximum synchronization with a fixed energy budget. We apply our general theory to the Kai system in the cyanobacterial circadian clock and predict a relationship between the KaiC ATPase activity and synchronization of the KaiC hexamers. The theoretical framework established here can be extended to study thermodynamics of collective behaviours in other non-equilibrium active systems.



中文翻译:

耦合分子振荡器同步的能源成本和最佳设计。

提出了一种耦合分子生化振荡器的模型来研究同步的非平衡热力学。在一般的考虑下,我们发现一组自主振荡器中的化学相互作用破坏了详细的平衡,从而消耗了能量。除了驱动每个单独的振荡器所消耗的能量外,这种额外的能量成本是为耦合相互作用(例如振荡器-振荡器交换反应)提供动力所必需的,这些相互作用负责校正每个单独的噪声振荡器相对于集合体的相位误差。整个合奏的振荡。通过解析和数值求解多振子系统的稳态分布,我们表明,随着能量耗散的增加,系统通过非平衡相变达到其同步状态。每个周期的关键能量耗散取决于交换反应的频率和强度,这揭示了一种最佳(高效)设计,可在固定能量预算下实现最大同步。我们将一般理论应用于蓝细菌生物钟中的Kai系统,并预测KaiC ATPase活性与KaiC六聚体同步之间的关系。此处建立的理论框架可以扩展为研究其他非平衡主动系统中集体行为的热力学。它揭示了一种最佳(高效)设计,可在固定的能量预算下实现最大的同步。我们将一般理论应用于蓝细菌生物钟中的Kai系统,并预测KaiC ATPase活性与KaiC六聚体同步之间的关系。此处建立的理论框架可以扩展为研究其他非平衡主动系统中集体行为的热力学。它揭示了一种最佳(高效)设计,可在固定的能量预算下实现最大的同步。我们将一般理论应用于蓝细菌生物钟中的Kai系统,并预测KaiC ATPase活性与KaiC六聚体同步之间的关系。此处建立的理论框架可以扩展为研究其他非平衡主动系统中集体行为的热力学。

更新日期:2019-11-13
down
wechat
bug