当前位置: X-MOL 学术Metall. Mater. Trans. B. › 论文详情
The Decarburization Kinetics of Metal Droplets in Emulsion Zone
Metallurgical and Materials Transactions B ( IF 1.952 ) Pub Date : 2019-10-15 , DOI: 10.1007/s11663-019-01710-0
Ameya Kadrolkar, Neslihan Dogan

A mathematical model has been developed to predict the decarburization rate within individual droplets in the emulsion zone. All the chronological events pertaining to the life cycle of a metal droplet in the emulsion zone like oxygen supply (from slag), external and internal decarburization have been modeled dynamically and validated against experimental data available in open literature. The bloating behavior of metal droplets in the emulsion was represented theoretically by incorporating an escape function dependent on internal CO gas generation. The model is able to predict the onset of bloating and the residence time of metal droplets in the emulsion zone. The residence time of droplet containing 2.6 wt pct C and 0.007 wt pct S is in the range of 10 to 13 seconds. The contribution of decarburization rate in the emulsion zone to the overall decarburization rate is studied using the industrial data reported by Cicutti et al. The model predicts 5 to 75 pct of total decarburization takes place in the emulsion zone. It is found that the extent of decarburization of a metal droplet depends on its initial carbon content rather than its oxygen content for slag containing FeO greater than 10 wt pct.
更新日期:2019-10-25

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug