当前位置: X-MOL 学术CrystEngComm › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In situ P-doping induced Se vacancies enhance the supercapacitor performance of NiCo2Se4
CrystEngComm ( IF 3.1 ) Pub Date : 2024-04-05 , DOI: 10.1039/d4ce00048j
Miaomiao Wang 1 , Weizhe Liu 1 , Li Zhang 1 , Huanli Liu 1 , Xiao Yang 1
Affiliation  

Transition metal selenide is a typical pseudocapacitive material used in supercapacitor electrodes, but its practical application is restricted due to its insufficient utilization rate of active sites and slow kinetics of redox reaction. Defect engineering can effectively adjust the electronic structure, provide additional intercalation sites, and realize the regulation of energy storage mechanism within the lattice. At present, heteroatom doping is an effective strategy that can provide abundant vacancy defects by introducing heterogeneous atoms, thereby achieving significantly improved electrochemical performance. Based on this, NiCo2Se4 electrode materials with Se vacancies were prepared by P doping for supercapacitors. The double-effect synergy of P doping and vacancy engineering can effectively change the electronic structure and improve the adsorption capacity of ions, which are more prone to redox reactions. The assembled hybrid supercapacitor (NiCo2Sex-P1//AC) has 90.2% capacity retention and 100% coulombic efficiency after 10 000 consecutive charge–discharge cycles, and it exhibits a high energy density of 94.6 W h kg−1 at a power density of 799.9 W kg−1. This provides an effective strategy for constructing high-performance supercapacitors.

中文翻译:

原位 P 掺杂诱导 Se 空位增强 NiCo2Se4 超级电容器性能

过渡金属硒化物是超级电容器电极中典型的赝电容材料,但由于其活性位点利用率不足、氧化还原反应动力学缓慢,限制了其实际应用。缺陷工程可以有效调整电子结构,提供额外的嵌入位点,实现晶格内储能机制的调控。目前,杂原子掺杂是一种有效的策略,可以通过引入异质原子来提供丰富的空位缺陷,从而实现电化学性能的显着提高。在此基础上,通过P掺杂制备了具有Se空位的NiCo 2 Se 4超级电容器电极材料。 P掺杂和空位工程的双效协同作用,可以有效改变电子结构,提高离子的吸附能力,更容易发生氧化还原反应。组装的混合超级电容器(NiCo 2 Se x -P 1 //AC)在10 000次连续充放电循环后具有90.2%的容量保持率和100%的库仑效率,并且在10000次连续充放电循环后表现出94.6 W h kg -1的高能量密度。功率密度为799.9 W kg -1。这为构建高性能超级电容器提供了有效的策略。
更新日期:2024-04-05
down
wechat
bug