当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ampere-level CO2 reduction to multicarbon products over a copper gas penetration electrode
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2022-11-02 , DOI: 10.1039/d2ee02121h
Chang Zhu 1, 2 , Yanfang Song 1, 2 , Xiao Dong 1 , Guihua Li 1, 2 , Aohui Chen 1, 3 , Wei Chen 1, 2 , Gangfeng Wu 1, 2 , Shoujie Li 1, 3 , Wei Wei 1, 2, 3 , Yuhan Sun 1, 2, 3
Affiliation  

Renewable energy-driven electrochemical CO2 conversion to value-added chemicals is a prospective strategy for addressing both carbon emission and energy consumption. Although considerable progress has been made in CO2 electroreduction, sustained production of multicarbon compounds at a high current density remains a challenge. Herein, we report a hierarchical micro/nanostructured Cu(100)-rich copper hollow fiber as a gas penetration electrode (GPE) that reduces CO2 to C2+ products with a faradaic efficiency of 62.8% and a current density of 2.3 A cm−2 in 0.5 M KHCO3 solution at −1.94 V (vs. RHE), outperforming state-of-the-art Cu-based catalysts. Electrochemical results demonstrate that optimized mass transfer and an enhanced three-phase interface reaction synergistically promote CO2 activation and reduction kinetics. Theoretical calculations further suggest that the Cu(100) facet of the Cu GPE favors CO* intermediate adsorption and then facilitates C–C coupling, resulting in selective C2+ product formation. This work provides an attractive avenue to achieve industrial current densities to produce multicarbon products via rational electrode designs.

中文翻译:

通过铜气体渗透电极将 CO2 还原为多碳产品的安培级

可再生能源驱动的电化学CO 2转化为增值化学品是解决碳排放和能源消耗的前瞻性策略。尽管在 CO 2电还原方面取得了相当大的进展,但在高电流密度下持续生产多碳化合物仍然是一个挑战。在此,我们报告了一种分层微/纳米结构富 Cu(100) 铜中空纤维作为气体渗透电极 (GPE),可将 CO 2还原为 C 2+产物,法拉第效率为 62.8%,电流密度为 2.3 A cm -2在 0.5 M KHCO 3溶液中,-1.94 V(对比RHE),性能优于最先进的铜基催化剂。电化学结果表明,优化的传质和增强的三相界面反应协同促进了 CO 2活化和还原动力学。理论计算进一步表明,Cu GPE 的 Cu(100) 面有利于 CO* 中间体吸附,然后促进 C-C 偶联,导致选择性 C 2+产物形成。这项工作为实现工业电流密度以通过合理的电极设计生产多碳产品提供了一条有吸引力的途径。
更新日期:2022-11-02
down
wechat
bug