当前位置: X-MOL 学术Plasma Chem. Plasma Proc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nitrite and Nitrate Production by NO and NO2 Dissolution in Water Utilizing Plasma Jet Resembling Gas Flow Pattern
Plasma Chemistry and Plasma Processing ( IF 2.6 ) Pub Date : 2022-06-29 , DOI: 10.1007/s11090-022-10270-2
Rasmus Talviste , Indrek Jõgi , Sirli Raud , Hadi Noori , Jüri Raud

This study investigated the reactive dissolution of nitric oxide (NO) and nitrogen dioxide (NO2) mixtures in deionized water. The dissolution study was carried out in a flat surface type gas–liquid reaction chamber utilizing a gas flow-pattern resembling plasma jets which are often used in biomedical applications. The concentration of NO and NO2 in the gas mixtures was varied in a broad range by oxidizing up to 800 ppm of nitric oxide in Ar carrier gas with variable amount of ozone. The production of nitrite (NO2) and nitrate (NO3) in the water was proportional to treatment time up to 50 min. The concentration of NO3 was a power function of gas phase NO2 while the concentration of NO2 increased approximately linearly with gas phase NO2. The formation of NO2 and NO3 could be described by reactions between dissolved NO2 and NO in the water while the production rate was determined by diffusion-limited mass transport of nitrogen oxides to the bulk of the liquid. At higher NO2 concentrations, the formation of dinitrogen tetraoxide (N2O4) increased the formation rate of NO2 and NO3. The identified mass transport limitation by diffusion suggests that convection of water created by the gas jet is insufficient and dissolution of nitrogen oxides can be increased by additional mixing. In respect of practical applications, the ratio of NO2 /NO3 in water could be varied from 0.8 to 5.3 with treatment time and gas phase NO2 and NO concentrations.



中文翻译:

利用等离子射流模拟气体流动模式通过 NO 和 NO2 溶解在水中生产亚硝酸盐和硝酸盐

本研究调查了一氧化氮 (NO) 和二氧化氮 (NO 2 ) 混合物在去离子水中的反应性溶解。溶解研究是在一个平面型气液反应室中进行的,该反应室采用了类似于生物医学应用中经常使用的等离子射流的气流模式。通过用不同量的臭氧氧化 Ar 载气中高达 800 ppm 的一氧化氮,气体混合物中 NO 和 NO 2的浓度在很宽的范围内变化。水中亚硝酸盐 (NO 2 - ) 和硝酸盐 (NO 3 - ) 的产生与最长 50 分钟的处理时间成正比。NO 3 -的浓度是气相 NO 2的幂函数而NO 2 -的浓度随气相NO 2近似线性增加。NO 2 -和 NO 3 -的形成可以通过溶解在水中的 NO 2和 NO 之间的反应来描述,而生产速率则通过氮氧化物向液体主体的扩散限制质量传输来确定。在较高的 NO 2浓度下,四氧化二氮 (N 2 O 4 ) 的形成增加了 NO 2 -和 NO 3 -的形成速率. 通过扩散确定的质量传递限制表明,由气体射流产生的水对流不足,并且可以通过额外的混合来增加氮氧化物的溶解。在实际应用方面,水中NO 2 - /NO 3 -的比值可随处理时间和气相NO 2和NO 浓度的变化在0.8 到5.3 之间变化。

更新日期:2022-06-29
down
wechat
bug