Skip to main content
Log in

Nitrite and Nitrate Production by NO and NO2 Dissolution in Water Utilizing Plasma Jet Resembling Gas Flow Pattern

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This study investigated the reactive dissolution of nitric oxide (NO) and nitrogen dioxide (NO2) mixtures in deionized water. The dissolution study was carried out in a flat surface type gas–liquid reaction chamber utilizing a gas flow-pattern resembling plasma jets which are often used in biomedical applications. The concentration of NO and NO2 in the gas mixtures was varied in a broad range by oxidizing up to 800 ppm of nitric oxide in Ar carrier gas with variable amount of ozone. The production of nitrite (NO2) and nitrate (NO3) in the water was proportional to treatment time up to 50 min. The concentration of NO3 was a power function of gas phase NO2 while the concentration of NO2 increased approximately linearly with gas phase NO2. The formation of NO2 and NO3 could be described by reactions between dissolved NO2 and NO in the water while the production rate was determined by diffusion-limited mass transport of nitrogen oxides to the bulk of the liquid. At higher NO2 concentrations, the formation of dinitrogen tetraoxide (N2O4) increased the formation rate of NO2 and NO3. The identified mass transport limitation by diffusion suggests that convection of water created by the gas jet is insufficient and dissolution of nitrogen oxides can be increased by additional mixing. In respect of practical applications, the ratio of NO2 /NO3 in water could be varied from 0.8 to 5.3 with treatment time and gas phase NO2 and NO concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kaushik NK, Ghimire B, Li Y et al (2018) Biological and medical applications of plasma-activated media, water and solutions. Biol Chem 400:39–62. https://doi.org/10.1515/hsz-2018-0226

    Article  CAS  PubMed  Google Scholar 

  2. Bradu C, Kutasi K, Magureanu M et al (2020) Reactive nitrogen species in plasma-activated water: generation, chemistry and application in agriculture. J Phys D Appl Phys 53:223001. https://doi.org/10.1088/1361-6463/ab795a

    Article  CAS  Google Scholar 

  3. Von Woedtke T, Emmert S, Metelmann HR et al (2020) Perspectives on cold atmospheric plasma (CAP) applications in medicine. Phys Plasmas 27:070601. https://doi.org/10.1063/5.0008093

    Article  CAS  Google Scholar 

  4. Ranieri P, Sponsel N, Kizer J et al (2020) Plasma agriculture: review from the perspective of the plant and its ecosystem. Plasma Process Polym 18:e2000162. https://doi.org/10.1002/ppap.202000162

    Article  CAS  Google Scholar 

  5. Park DP, Davis K, Gilani S et al (2013) Reactive nitrogen species produced in water by non-equilibrium plasma increase plant growth rate and nutritional yield. Curr Appl Phys 13:S19–S29. https://doi.org/10.1016/j.cap.2012.12.019

    Article  Google Scholar 

  6. Lukes P, Dolezalova E, Sisrova I, Clupek M (2014) Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sour Sci Technol 23:015019. https://doi.org/10.1088/0963-0252/23/1/015019

    Article  CAS  Google Scholar 

  7. Komiyama H, Inoue H (1978) Reaction and transport of nitrogen oxides in nitrous acid solutions. J Chem Eng Jpn 11:25–32. https://doi.org/10.1252/jcej.11.25

    Article  CAS  Google Scholar 

  8. Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221. https://doi.org/10.1007/PL00008128

    Article  CAS  PubMed  Google Scholar 

  9. Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35. https://doi.org/10.1046/j.1469-8137.2003.00804.x

    Article  CAS  PubMed  Google Scholar 

  10. Cui D, Yin Y, Wang J et al (2019) Research on the physio-biochemical mechanism of non-thermal plasma-regulated seed germination and early seedling development in Arabidopsis. Front Plant Sci 10:1–12. https://doi.org/10.3389/fpls.2019.01322

    Article  Google Scholar 

  11. Komiyama H, Inoue H (1980) Absorption of nitrogen oxides into water. Chem Eng Sci 35:154–161

    Article  CAS  Google Scholar 

  12. Aoki M, Tanaka H, Komiyama H, Inoue H (1982) Simultaneous absorption of NO and NO2 into alkaline solutions. J Chem Eng Jpn 15:362–367

    Article  CAS  Google Scholar 

  13. Lee YN, Schwartz SE (1981) Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure. J Phys Chem 85:840–848. https://doi.org/10.1021/j150607a022

    Article  CAS  Google Scholar 

  14. Lee YN, Schwartz SE (1981) Evaluation of the rate of uptake of nitrogen dioxide by atmospheric and surface liquid water. J Geophys Res 86:11971–11983. https://doi.org/10.1029/JC086iC12p11971

    Article  CAS  Google Scholar 

  15. Schwartz SE, White WH (1983) Kinetics of reactive dissolution of nitrogen oxides into aqueous solution. Adv Environ Sci Technol 12:1–116

    CAS  Google Scholar 

  16. Lewis RS, Deen WM (1994) Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem Res Toxicol 7:568–574. https://doi.org/10.1038/209706a0

    Article  CAS  PubMed  Google Scholar 

  17. Thomas D, Vanderschuren J (1998) Effect of temperature on NOx absorption into nitric acid solutions containing hydrogen peroxide. Ind Eng Chem Res 37:4418–4423. https://doi.org/10.1016/j.cep.2007.08.014

    Article  CAS  Google Scholar 

  18. Machala Z, Tarabová B, Sersenová D et al (2019) Chemical and antibacterial effects of plasma activated water: correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J Phys D Appl Phys 52:034002. https://doi.org/10.1088/1361-6463/aae807

    Article  CAS  Google Scholar 

  19. Jirásek V, Lukeš P (2019) Formation of reactive chlorine species in saline solution treated by non-equilibrium atmospheric pressure He/O2 plasma jet. Plasma Sour Sci Technol 28:035015. https://doi.org/10.1088/1361-6595/ab0930

    Article  CAS  Google Scholar 

  20. Uchida G, Kawabata K, Ito T et al (2017) Development of a non-equilibrium 60 MHz plasma jet with a long discharge plume. J Appl Phys 122:033301. https://doi.org/10.1063/1.4993715

    Article  CAS  Google Scholar 

  21. Uchida G, Nakajima A, Ito T et al (2016) Effects of nonthermal plasma jet irradiation on the selective production of H2O2 and NO2- in liquid water. J Appl Phys 120:203302. https://doi.org/10.1063/1.4968568

    Article  CAS  Google Scholar 

  22. Schmidt-Bleker A, Bansemer R, Reuter S, Weltmann KD (2016) How to produce an NOx- instead of Ox-based chemistry with a cold atmospheric plasma jet. Plasma Process Polym 13:1118–1125. https://doi.org/10.1002/ppap.201600062

    Article  CAS  Google Scholar 

  23. Jablonowski H, Schmidt-Bleker A, Weltmann KD et al (2018) Non-touching plasma-liquid interaction-where is aqueous nitric oxide generated? Phys Chem Chem Phys 20:25387–25398. https://doi.org/10.1039/c8cp02412j

    Article  CAS  PubMed  Google Scholar 

  24. Noori H, Raud J, Talviste R, Jõgi I (2021) Water dissolution of nitrogen oxides produced by ozone oxidation of nitric-oxide Water dissolution of nitrogen oxides produced by ozone oxidation of nitric oxide. Ozone Sci Eng 43:284–294

    Article  CAS  Google Scholar 

  25. Hansen L, Schmidt-Bleker A, Bansemer R et al (2018) Influence of a liquid surface on the NOx production of a cold atmospheric pressure plasma jet. J Phys D Appl Phys 51:474002. https://doi.org/10.1088/1361-6463/aad6f0

    Article  CAS  Google Scholar 

  26. Iséni S, Reuter S, Weltmann KD (2014) NO2 dynamics of an Ar/Air plasma jet investigated by in situ quantum cascade laser spectroscopy at atmospheric pressure. J Phys D Appl Phys 47:075203. https://doi.org/10.1088/0022-3727/47/7/075203

    Article  CAS  Google Scholar 

  27. Van Gessel AFH, Hrycak B, Jasiński M et al (2013) Temperature and NO density measurements by LIF and OES on an atmospheric pressure plasma jet. J Phys D Appl Phys 46:095201. https://doi.org/10.1088/0022-3727/46/9/095201

    Article  CAS  Google Scholar 

  28. Van Gessel AFH, Alards KMJ, Bruggeman PJ (2013) NO production in an RF plasma jet at atmospheric pressure. J Phys D Appl Phys 46:265202. https://doi.org/10.1088/0022-3727/46/26/265202

    Article  CAS  Google Scholar 

  29. Van Ham BTJ, Hofmann S, Brandenburg R, Bruggeman PJ (2014) In situ absolute air, O3 and NO densities in the effluent of a cold RF argon atmospheric pressure plasma jet obtained by molecular beam mass spectrometry. J Phys D Appl Phys 47:224013. https://doi.org/10.1088/0022-3727/47/22/224013

    Article  CAS  Google Scholar 

  30. Preissing P, Korolov I, Schulze J et al (2020) Three-dimensional density distributions of NO in the effluent of the COST reference microplasma jet operated in He/N2/O2. Plasma Sources Sci Technol 29:125001. https://doi.org/10.1088/1361-6595/abbd86

    Article  CAS  Google Scholar 

  31. Hao X, Mattson AM, Edelblute CM et al (2014) Nitric oxide generation with an air operated non-thermal plasma jet and associated microbial inactivation mechanisms. Plasma Process Polym 11:1044–1056. https://doi.org/10.1002/ppap.201300187

    Article  CAS  Google Scholar 

  32. Brubaker TR, Ishikawa K, Kondo H et al (2019) Liquid dynamics in response to an impinging low-temperature plasma jet. J Phys D Appl Phys 52:075203. https://doi.org/10.1088/1361-6463/aaf460

    Article  CAS  Google Scholar 

  33. Semenov IL, Weltmann KD, Loffhagen D (2019) Modelling of the transport phenomena for an atmospheric-pressure plasma jet in contact with liquid. J Phys D Appl Phys 52:315203. https://doi.org/10.1088/1361-6463/ab208e

    Article  CAS  Google Scholar 

  34. Raud S, Raud J, Jõgi I et al (2021) The production of plasma activated water in controlled ambient gases and its impact on cancer cell viability. Plasma Chem Plasma Process 41:1381–1395. https://doi.org/10.1007/s11090-021-10183-6

    Article  CAS  Google Scholar 

  35. Jõgi I, Levoll E, Raud J (2016) Plasma oxidation of NO in O2:N2 mixtures: the importance of back-reaction. Chem Eng J 301:149–157. https://doi.org/10.1016/j.cej.2016.04.057

    Article  CAS  Google Scholar 

  36. Jõgi I (2019) The effect of TiO2 catalyst on the NO reduction by barrier discharge in nitrogen. Plasma Chem Plasma Process 39:1191–1202. https://doi.org/10.1007/s11090-019-10001-0

    Article  CAS  Google Scholar 

  37. Manley TC (1943) The electric characteristics of the ozonator discharge. J Electrochem Soc 84:83–96

    Article  Google Scholar 

  38. Jõgi I, Bichevin V, Laan M et al (2009) NO conversion by dielectric barrier discharge and TiO2 catalyst: effect of oxygen. Plasma Chem Plasma Process 29:205–215. https://doi.org/10.1007/s11090-009-9171-5

    Article  CAS  Google Scholar 

  39. Jõgi I, Erme K, Haljaste A, Laan M (2013) Oxidation of nitrogen oxide in hybrid plasma-catalytic reactors based on DBD and Fe2O3. Eur Phys J Appl Phys 61:24305. https://doi.org/10.1051/epjap/2012120421

    Article  CAS  Google Scholar 

  40. Jõgi I, Haljaste A, Laan M (2014) Hybrid TiO2 based plasma-catalytic reactors for the removal of hazardous gasses. Surf Coat Technol 242:195–199. https://doi.org/10.1016/j.surfcoat.2013.10.016

    Article  CAS  Google Scholar 

  41. Talviste R, Raud S, Jõgi I et al (2019) Investigation of a He micro plasma-jet utilized for treatment of prostate cancer cells. Plasma Res Express 1:045002. https://doi.org/10.1088/2516-1067/ab4ea9

    Article  CAS  Google Scholar 

  42. Erme K, Jõgi I (2019) Metal oxides as catalysts and adsorbents in ozone oxidation of NOx. Environ Sci Technol 53:5266–5271. https://doi.org/10.1021/acs.est.8b07307

    Article  CAS  PubMed  Google Scholar 

  43. Jõgi I, Erme K, Levoll E et al (2018) Plasma and catalyst for the oxidation of NOx. Plasma Sour Sci Technol 27:35001. https://doi.org/10.1088/1361-6595/aaae3c

    Article  CAS  Google Scholar 

  44. Jõgi I, Erme K, Raud J, Laan M (2016) Oxidation of NO by ozone in the presence of TiO2 catalyst. Fuel 173:45–54. https://doi.org/10.1016/j.fuel.2016.01.039

    Article  CAS  Google Scholar 

  45. Decanini E, Nardini G, Paglianti A (2000) Absorption of nitrogen oxides in columns equipped with low-pressure drops structured packings. Ind Eng Chem Res 39:5003–5011. https://doi.org/10.1021/ie000270q

    Article  CAS  Google Scholar 

  46. Janda M, Hensel K, Tóth P et al (2021) The role of HNO2 in the generation of plasma-activated water by air transient spark discharge. Appl Sci 11:7053. https://doi.org/10.3390/app11157053

    Article  CAS  Google Scholar 

  47. Karlsson HT (1984) Exact solution to NO2 absorption. J Chem Eng Jpn 17:214–215

    Article  CAS  Google Scholar 

  48. Sander R (2015) Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys 15:4399–4981. https://doi.org/10.5194/acp-15-4399-2015

    Article  CAS  Google Scholar 

  49. Oehmigen K, Hoder T, Wilke C et al (2011) Volume effects of atmospheric-pressure plasma in liquids. IEEE Trans Plasma Sci 39:2646–2647. https://doi.org/10.1109/TPS.2011.2158242

    Article  CAS  Google Scholar 

  50. Kondeti VSSK, Bruggeman PJ (2021) The interaction of an atmospheric pressure plasma jet with liquid water: dimple dynamics and its impact on crystal violet decomposition. J Phys D Appl Phys 54:045204. https://doi.org/10.1088/1361-6463/abbeb5

    Article  CAS  Google Scholar 

  51. Adeney W, Becker HG (1920) The determination of the rate of solution of atmospehric nitrogen and oxygen by water-part II. Philos Mag J Sci 44:386–404

    Google Scholar 

  52. Tachibana K, Oh JS, Nakamura T (2020) Oxidation processes of NO for production of reactive nitrogen species in plasma activated water. J Phys D Appl Phys 53:385202. https://doi.org/10.1088/1361-6463/ab91eb

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Estonian Research Council project PUT1432. This publication is based upon work from COST Action CA19110—PlAgri, supported by COST (European Cooperation in Science and Technology-www.cost.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrek Jõgi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talviste, R., Jõgi, I., Raud, S. et al. Nitrite and Nitrate Production by NO and NO2 Dissolution in Water Utilizing Plasma Jet Resembling Gas Flow Pattern. Plasma Chem Plasma Process 42, 1101–1114 (2022). https://doi.org/10.1007/s11090-022-10270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10270-2

Keywords

Navigation