当前位置: X-MOL 学术Nat. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Topologically protected quantum entanglement emitters
Nature Photonics ( IF 32.3 ) Pub Date : 2022-02-17 , DOI: 10.1038/s41566-021-00944-2
Tianxiang Dai 1 , Yutian Ao 1 , Jueming Bao 1 , Jun Mao 1 , Yulin Chi 1 , Zhaorong Fu 1 , Yilong You 1 , Xiaojiong Chen 1 , Chonghao Zhai 1 , Yan Li 1, 2, 3, 4 , Xiaoyong Hu 1, 2, 3, 4 , Qihuang Gong 1, 2, 3, 4 , Jianwei Wang 1, 2, 3, 4 , Bo Tang 5 , Yan Yang 5 , Zhihua Li 5 , Luqi Yuan 6 , Fei Gao 7 , Xiao Lin 7 , Mark G. Thompson 8 , Jeremy L. O’Brien 9
Affiliation  

Entanglement and topology portray nature at the fundamental level but differently. Entangled states of particles are intrinsically sensitive to the environment, whereas the topological phases of matter are naturally robust against environmental perturbations. Harnessing topology to protect entanglement has great potential for reliable quantum applications. Generating topologically protected entanglement, however, remains a significant challenge, requiring the operation of complex quantum devices in extreme conditions. Here we report topologically protected entanglement emitters that emit a topological Einstein–Podolsky–Rosen state and a multiphoton entangled state from a monolithically integrated plug-and-play silicon photonic chip in ambient conditions. The device emulating a photonic anomalous Floquet insulator allows the generation of four-photon topological entangled states at non-trivial edge modes, verified by the observation of a reduced de Broglie wavelength. Remarkably, we show that the Einstein–Podolsky–Rosen entanglement can be topologically protected against artificial structure defects by comparing the state fidelities of 0.968 ± 0.004 and 0.951 ± 0.010 for perfect and defected emitters, respectively. Our topologically protected devices may find applications in quantum computation and in the study of quantum topological physics.



中文翻译:

拓扑保护的量子纠缠发射器

纠缠和拓扑在基本层面上描绘了自然,但不同。粒子的纠缠态本质上对环境敏感,而物质的拓扑相自然对环境扰动具有鲁棒性。利用拓扑结构来保护纠缠对于可靠的量子应用具有巨大的潜力。然而,产生拓扑保护的纠缠仍然是一项重大挑战,需要在极端条件下运行复杂的量子设备。在这里,我们报告了拓扑保护的纠缠发射器,它在环境条件下从单片集成的即插即用硅光子芯片发射拓扑 Einstein-Podolsky-Rosen 态和多光子纠缠态。模拟光子异常 Floquet 绝缘体的设备允许在非平凡边缘模式下产生四光子拓扑纠缠态,通过观察减少的德布罗意波长来验证。值得注意的是,我们通过比较完美发射器和缺陷发射器的状态保真度分别为 0.968 ± 0.004 和 0.951 ± 0.010,表明 Einstein-Podolsky-Rosen 纠缠可以拓扑保护免受人工结构缺陷的影响。我们的拓扑保护设备可能会在量子计算和量子拓扑物理研究中得到应用。我们表明,通过比较完美发射器和缺陷发射器的状态保真度分别为 0.968 ± 0.004 和 0.951 ± 0.010,可以在拓扑上保护 Einstein-Podolsky-Rosen 纠缠免受人工结构缺陷的影响。我们的拓扑保护设备可能会在量子计算和量子拓扑物理研究中得到应用。我们表明,通过比较完美发射器和缺陷发射器的状态保真度分别为 0.968 ± 0.004 和 0.951 ± 0.010,可以在拓扑上保护 Einstein-Podolsky-Rosen 纠缠免受人工结构缺陷的影响。我们的拓扑保护设备可能会在量子计算和量子拓扑物理研究中得到应用。

更新日期:2022-02-18
down
wechat
bug