Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Topologically protected quantum entanglement emitters

Abstract

Entanglement and topology portray nature at the fundamental level but differently. Entangled states of particles are intrinsically sensitive to the environment, whereas the topological phases of matter are naturally robust against environmental perturbations. Harnessing topology to protect entanglement has great potential for reliable quantum applications. Generating topologically protected entanglement, however, remains a significant challenge, requiring the operation of complex quantum devices in extreme conditions. Here we report topologically protected entanglement emitters that emit a topological Einstein–Podolsky–Rosen state and a multiphoton entangled state from a monolithically integrated plug-and-play silicon photonic chip in ambient conditions. The device emulating a photonic anomalous Floquet insulator allows the generation of four-photon topological entangled states at non-trivial edge modes, verified by the observation of a reduced de Broglie wavelength. Remarkably, we show that the Einstein–Podolsky–Rosen entanglement can be topologically protected against artificial structure defects by comparing the state fidelities of 0.968 ± 0.004 and 0.951 ± 0.010 for perfect and defected emitters, respectively. Our topologically protected devices may find applications in quantum computation and in the study of quantum topological physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A topological quantum entanglement emitter in a photonic anomalous Floquet topological insulator.
Fig. 2: Characterizations of the topological quantum device.
Fig. 3: Experimental demonstration of topological entanglement.
Fig. 4: Demonstration of topological protection of quantum entanglement against certain imperfections.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The analysis codes are available from the corresponding authors upon reasonable request.

References

  1. Horodecki, R., Horodecki, P. & Horodecki, M. et al. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  2. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Google Scholar 

  3. Wang, X.-L., Luo, Y.-H. & Huang, H.-L. et al. 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett. 120, 260502 (2018).

    ADS  Google Scholar 

  4. Omran, A., Levine, H. & Keesling, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).

    ADS  MathSciNet  Google Scholar 

  5. Song, C., Xu, K. & Li, H. et al. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365, 574–577 (2019).

    ADS  MathSciNet  Google Scholar 

  6. Ladd, T. D., Jelezko, F. & Laflamme, R. et al. Quantum computers. Nature 464, 45–53 (2010).

    ADS  Google Scholar 

  7. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    ADS  Google Scholar 

  8. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    ADS  Google Scholar 

  9. Jotzu, G., Messer, M. & Desbuquois, R. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    ADS  Google Scholar 

  10. Poo, Y., Wu, R.-X. & Lin, Z. et al. Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett. 106, 093903 (2011).

    ADS  Google Scholar 

  11. Segev, M. & Bandres, M. A. Topological photonics: where do we go from here? Nanophotonics 10, 425–434 (2021).

    Google Scholar 

  12. Chen, Z. & Segev, M. Highlighting photonics: looking into the next decade. eLight 1, 2 (2021).

    Google Scholar 

  13. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    ADS  Google Scholar 

  14. Ozawa, T., Price, H. M. & Amo, A. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    ADS  MathSciNet  Google Scholar 

  15. Yuan, L., Dutt, A. & Fan, S. Tutorial: synthetic frequency dimensions in dynamically modulated ring resonators. APL Photon. 6, 071102 (2021).

    ADS  Google Scholar 

  16. Wang, Z., Chong, Y. & Joannopoulos, J. D. et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    ADS  Google Scholar 

  17. Kraus, Y. E., Lahini, Y. & Ringel, Z. et al. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    ADS  Google Scholar 

  18. Hafezi, M., Demler, E. A. & Lukin, M. D. et al. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Google Scholar 

  19. Hafezi, M., Mittal, S. & Fan, J. et al. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    ADS  Google Scholar 

  20. Dong, J.-W., Chen, X.-D. & Zhu, H. et al. Valley photonic crystals for control of spin and topology. Nat. Mater. 16, 298–302 (2017).

    ADS  Google Scholar 

  21. Kitagawa, T., Broome, M. A. & Fedrizzi, A. et al. Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 3, 882 (2012).

    ADS  Google Scholar 

  22. Xiao, L., Zhan, X. & Bian, Z. H. et al. Observation of topological edge states in parity–time-symmetric quantum walks. Nat. Phys. 13, 1117–1123 (2017).

    Google Scholar 

  23. Rechtsman, M. C., Lumer, Y. & Plotnik, Y. et al. Topological protection of photonic path entanglement. Optica 3, 925–930 (2016).

    ADS  Google Scholar 

  24. Wang, Y., Pang, X.-L. & Lu, Y.-H. et al. Topological protection of two-photon quantum correlation on a photonic chip. Optica 6, 955–960 (2019).

    ADS  Google Scholar 

  25. Tambasco, J.-L., Corrielli, G. & Chapman, R. J. et al. Quantum interference of topological states of light. Sci. Adv. 4, eaat3187 (2018).

    ADS  Google Scholar 

  26. Chen, Y., He, X.-T. & Cheng, Y.-J. et al. Topologically protected valley-dependent quantum photonic circuits. Phys. Rev. Lett. 126, 230503 (2021).

    ADS  Google Scholar 

  27. Barik, S., Karasahin, A. & Flower, C. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  28. Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).

    ADS  Google Scholar 

  29. Blanco-Redondo, A., Bell, B. & Oren, D. et al. Topological protection of biphoton states. Science 362, 568–571 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  30. Wang, M., Doyle, C. & Bell, B. et al. Topologically protected entangled photonic states. Nanophotonics 8, 1327–1335 (2019).

    Google Scholar 

  31. Mittal, S., Orre, V. V. & Leykam, D. et al. Photonic anomalous quantum Hall effect. Phys. Rev. Lett. 123, 043201 (2019).

    ADS  Google Scholar 

  32. Mittal, S., Orre, V. V. & Goldschmidt, E. A. et al. Tunable quantum interference using a topological source of indistinguishable photon pairs. Nat. Photon. 15, 542–548 (2021).

    ADS  Google Scholar 

  33. Wang, J., Sciarrino, F. & Laing, A. et al. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    ADS  Google Scholar 

  34. Elshaari, A. W., Pernice, W. & Srinivasan, K. et al. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    ADS  Google Scholar 

  35. Llewellyn, D., Ding, Y. & Faruque, I. I. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2020).

    Google Scholar 

  36. Wang, J., Paesani, S. & Santagati, R. et al. Experimental quantum Hamiltonian learning. Nat. Phys. 13, 551–555 (2017).

    Google Scholar 

  37. Wang, J., Paesani, S. & Ding, Y. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  38. Liang, G. Q. & Chong, Y. D. Optical resonator analog of a two-dimensional topological insulator. Phys. Rev. Lett. 110, 203904 (2013).

    ADS  Google Scholar 

  39. Pasek, M. & Chong, Y. D. Network models of photonic Floquet topological insulators. Phys. Rev. B 89, 075113 (2014).

    ADS  Google Scholar 

  40. Gao, F., Gao, Z. & Shi, X. et al. Probing topological protection using a designer surface plasmon structure. Nat. Commun. 7, 11619 (2016).

    ADS  Google Scholar 

  41. Afzal, S., Zimmerling, T. J. & Ren, Y. et al. Realization of anomalous Floquet insulators in strongly coupled nanophotonic lattices. Phys. Rev. Lett. 124, 253601 (2020).

    ADS  Google Scholar 

  42. Rudner, M. S., Lindner, N. H. & Berg, E. et al. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013).

    Google Scholar 

  43. Rechtsman, M. C., Zeuner, J. M. & Plotnik, Y. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    ADS  Google Scholar 

  44. Maczewsky, L. J., Höckendorf, B. & Kremer, M. et al. Fermionic time-reversal symmetry in a photonic topological insulator. Nat. Mater. 19, 855–860 (2020).

    ADS  Google Scholar 

  45. Ao, Y., Hu, X. & Li, C. et al. Topological properties of coupled resonator array based on accurate band structure. Phys. Rev. Mater. 2, 105201 (2018).

    Google Scholar 

  46. Afzal, S. & Van, V. Topological phases and the bulk-edge correspondence in 2D photonic microring resonator lattices. Opt. Express 26, 14567–14577 (2018).

    ADS  Google Scholar 

  47. Dutt, A., Lin, Q. & Yuan, L. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020).

    ADS  Google Scholar 

  48. Paesani, S., Borghi, M. & Signorini, S. et al. Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun. 11, 2505 (2020).

    ADS  Google Scholar 

  49. Lee, H., Kok, P. & Dowling, J. P. A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325–2338 (2002).

    ADS  MathSciNet  Google Scholar 

  50. Li, X., Voss, P. L. & Sharping, J. E. et al. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett. 94, 053601 (2005).

    ADS  Google Scholar 

  51. Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2013).

    ADS  Google Scholar 

  52. James, D. F. V., Kwiat, P. G. & Munro, W. J. et al. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    ADS  Google Scholar 

  53. Clauser, J. F., Horne, M. A. & Shimony, A. et al. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    ADS  MATH  Google Scholar 

  54. Kumar, R., Ong, J. R. & Savanier, M. et al. Controlling the spectrum of photons generated on a silicon nanophotonic chip. Nat. Commun. 5, 5489 (2014).

    ADS  Google Scholar 

  55. Vigliar, C., Paesani, S. & Ding, Y. et al. Error-protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021).

    Google Scholar 

Download references

Acknowledgements

We thank H. Xu, Q. He and P. Xue for useful discussions. We acknowledge support from the National Natural Science Foundation of China (nos. 61975001, 61590933, 61904196, 61675007, 92150302, 11734001, 91950204, 11527901, 62171406, 61801426 and 11961141010), the National Key R&D Program of China (nos. 2019YFA0308702, 2018YFB1107205, 2018YFB2200403 and 2018YFA0704404), Beijing Natural Science Foundation (Z190005), Beijing Municipal Science and Technology Commission (Z191100007219001) and Key R&D Program of Guangdong Province (2018B030329001). L.Y. acknowledges support from the Natural Science Foundation of Shanghai (19ZR1475700) and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. F.G. acknowledges support from the ZJNSF under grant no. Z20F010018, the National Key Laboratory Foundation (no. 6142205200402) and the Fundamental Research Funds for the Central Universities (no. 2020XZZX002-15).

Author information

Authors and Affiliations

Authors

Contributions

J.W. conceived the project. T.D., Y.A., J.B., J.M. and Y.C. contributed equally to this work. T.D., J.B. and Z.F. implemented the experiment. J.M., Y.C., B.T., Y. Yang and Z.L. fabricated the device. T.D., Y.A., J.B. and X.C. designed the devices. Y.A. and Y. You provided the theory and simulations. T.D., Y.A., Z.F., C.Z., L.Y., F.G. and X.L. performed the theoretical analysis. M.G.T., J.L.O., Y.L., X.H., Q.G. and J.W. managed the project. T.D., Y.A. and J.W. wrote the manuscript. All the authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Yan Yang, Xiaoyong Hu, Qihuang Gong or Jianwei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9.

Supplementary Video 1

Real-time measurement of field distributions of topological pseudospin states with a continuous scan of wavelength spanning over one FSR. Both pseudospin-up and pseudospin-down states are induced.

Supplementary Video 2

Real-time measurement of field distributions of topological pseudospin states with a continuous scan of wavelength spanning over one FSR. Pseudospin-down states are induced.

Supplementary Video 3

Real-time measurement of field distributions of topological pseudospin states with a continuous scan of wavelength spanning over one FSR. Pseudospin-up states are induced.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, T., Ao, Y., Bao, J. et al. Topologically protected quantum entanglement emitters. Nat. Photon. 16, 248–257 (2022). https://doi.org/10.1038/s41566-021-00944-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00944-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing