当前位置: X-MOL 学术J. Micromech. Microeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling and analysis of sulfur hexafluoride plasma etching for silicon microcavity resonators
Journal of Micromechanics and Microengineering ( IF 2.4 ) Pub Date : 2021-10-19 , DOI: 10.1088/1361-6439/ac2bad
Luiz Felipe Aguinsky 1 , Georg Wachter 2 , Paul Manstetten 3 , Frncio Rodrigues 1 , Michael Trupke 2 , Ulrich Schmid 4 , Andreas Hssinger 5 , Josef Weinbub 1
Affiliation  

Silicon microcavity resonators are an important component in modern photonics. In order to optimize their performance, it is fundamental to control their final shape, in particular with respect to the involved CMOS compatible, two-step sulfur hexafluoride plasma etching fabrication process. To that end, we use a ray-tracing based pseudo-particle model to enhance a level-set topography simulator enabling us to effectively capture the characteristics of sulfur hexafluoride plasma etching in the low-voltage-bias regime. By introducing a novel and robust calibration procedure and by applying it to experimental data of a reference two-step etching process, we are able to optimize the etch times and photoresist geometry without costly reactor-scale simulations and simultaneously explore beyond conventional statistical process modeling. Through defining objective design criteria by way of Gaussian beam analysis, we analyze the plasma etching process and provide new insights into alternative processing guidelines which impact shape measurements such as cavity opening and parabolic form. By means of scale analysis, we propose that the radius of curvature of the microcavity is optimized with a reduction of the photoresist opening diameter. After simulated fabrication runs, we surmise that the cavity quality parameters are improved by increasing the duration of the first etch step by a factor of 2 and by decreasing the second etch step duration by up to $50\%$ in comparison to the reference two-step etching process. This results in an overall reduction of etch time of at least $35\%$, allowing to significantly optimize the overall fabrication process.



中文翻译:

硅微腔谐振器六氟化硫等离子体刻蚀建模与分析

硅微腔谐振器是现代光子学的重要组成部分。为了优化它们的性能,控制它们的最终形状是基础,特别是关于所涉及的 CMOS 兼容、两步六氟化硫等离子体蚀刻制造工艺。为此,我们使用基于光线追踪的伪粒子模型来增强水平集地形模拟器,使我们能够有效地捕捉低电压偏置状态下六氟化硫等离子体蚀刻的特性。通过引入一种新颖且稳健的校准程序,并将其应用于参考两步蚀刻工艺的实验数据,我们能够优化蚀刻时间和光刻胶几何形状,而无需进行昂贵的反应器规模模拟,同时探索超出传统统计工艺建模的范围。通过高斯光束分析定义客观设计标准,我们分析了等离子蚀刻工艺,并提供了对影响形状测量的替代加工指南的新见解,例如空腔开口和抛物线形状。通过尺度分析,我们建议通过减小光刻胶开口直径来优化微腔的曲率半径。在模拟制造运行之后,我们推测通过将第一个蚀刻步骤的持续时间增加 2 倍并将第二个蚀刻步骤的持续时间减少多达 我们分析了等离子蚀刻工艺,并提供了对影响形状测量(例如空腔开口和抛物线形状)的替代加工指南的新见解。通过尺度分析,我们建议通过减小光刻胶开口直径来优化微腔的曲率半径。在模拟制造运行之后,我们推测通过将第一个蚀刻步骤的持续时间增加 2 倍并将第二个蚀刻步骤的持续时间减少多达 我们分析了等离子蚀刻工艺,并提供了对影响形状测量(例如空腔开口和抛物线形状)的替代加工指南的新见解。通过尺度分析,我们建议通过减小光刻胶开口直径来优化微腔的曲率半径。在模拟制造运行之后,我们推测通过将第一个蚀刻步骤的持续时间增加 2 倍并将第二个蚀刻步骤的持续时间减少多达$50\%$与参考的两步蚀刻工艺相比。这导致蚀刻时间的整体减少至少$35\%$,从而允许显着优化整体制造过程。

更新日期:2021-10-19
down
wechat
bug