当前位置: X-MOL 学术Biomolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Theory and Practice of Coarse-Grained Molecular Dynamics of Biologically Important Systems
Biomolecules ( IF 5.5 ) Pub Date : 2021-09-11 , DOI: 10.3390/biom11091347
Adam Liwo 1 , Cezary Czaplewski 1 , Adam K Sieradzan 1 , Agnieszka G Lipska 1 , Sergey A Samsonov 1 , Rajesh K Murarka 2
Affiliation  

Molecular dynamics with coarse-grained models is nowadays extensively used to simulate biomolecular systems at large time and size scales, compared to those accessible to all-atom molecular dynamics. In this review article, we describe the physical basis of coarse-grained molecular dynamics, the coarse-grained force fields, the equations of motion and the respective numerical integration algorithms, and selected practical applications of coarse-grained molecular dynamics. We demonstrate that the motion of coarse-grained sites is governed by the potential of mean force and the friction and stochastic forces, resulting from integrating out the secondary degrees of freedom. Consequently, Langevin dynamics is a natural means of describing the motion of a system at the coarse-grained level and the potential of mean force is the physical basis of the coarse-grained force fields. Moreover, the choice of coarse-grained variables and the fact that coarse-grained sites often do not have spherical symmetry implies a non-diagonal inertia tensor. We describe selected coarse-grained models used in molecular dynamics simulations, including the most popular MARTINI model developed by Marrink’s group and the UNICORN model of biological macromolecules developed in our laboratory. We conclude by discussing examples of the application of coarse-grained molecular dynamics to study biologically important processes.

中文翻译:

重要生物系统粗粒度分子动力学理论与实践

与可用于全原子分子动力学的那些相比,具有粗粒度模型的分子动力学现在被广泛用于模拟大时间和尺寸尺度的生物分子系统。在这篇评论文章中,我们描述了粗粒度分子动力学的物理基础、粗粒度力场、运动方程和相应的数值积分算法,并选择了粗粒度分子动力学的实际应用。我们证明了粗粒位点的运动受平均力势以及摩擦力和随机力的控制,这些力是通过整合次要自由度而产生的。最后,朗之万动力学是在粗粒度水平上描述系统运动的自然手段,平均力势是粗粒度力场的物理基础。此外,粗粒度变量的选择以及粗粒度站点通常不具有球对称性的事实意味着非对角惯性张量。我们描述了用于分子动力学模拟的选定粗粒度模型,包括由 Marrink 小组开发的最流行的 MARTINI 模型和我们实验室开发的生物大分子的 UNICORN 模型。最后,我们讨论了应用粗粒度分子动力学研究生物学重要过程的例子。粗粒度变量的选择以及粗粒度站点通常不具有球对称性的事实意味着非对角惯性张量。我们描述了用于分子动力学模拟的选定粗粒度模型,包括由 Marrink 小组开发的最流行的 MARTINI 模型和我们实验室开发的生物大分子的 UNICORN 模型。最后,我们讨论了应用粗粒度分子动力学研究生物学重要过程的例子。粗粒度变量的选择以及粗粒度站点通常不具有球对称性的事实意味着非对角惯性张量。我们描述了用于分子动力学模拟的选定粗粒度模型,包括由 Marrink 小组开发的最流行的 MARTINI 模型和我们实验室开发的生物大分子的 UNICORN 模型。最后,我们讨论了应用粗粒度分子动力学研究生物学重要过程的例子。
更新日期:2021-09-12
down
wechat
bug