当前位置: X-MOL 学术Acta Mech. Solida Sin. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Supersonic Aerodynamic Energy Harvester: A Functionally Graded Material Beam with a Giant Magnetostrictive Thin Film
Acta Mechanica Solida Sinica ( IF 2.0 ) Pub Date : 2021-09-03 , DOI: 10.1007/s10338-021-00265-5
Zhengqi Qin 1 , Weijiao Chen 1 , Jian Zang 1 , Yewei Zhang 1
Affiliation  

In this study, a simply supported functionally graded material beam with a giant magnetostrictive thin film (GMF) was selected as an energy harvester. Based on the theory of large deformation and the Villari effect of GMF, piston theory was used to simulate the dynamic equation of the whole structure under supersonic aerodynamic pressure and in a thermal environment by using Hamilton’s principle, and the energy harvesting effect of GMF was simulated by using a Runge–Kutta algorithm. Below the critical flutter velocity, the maximum voltage output and energy harvesting results were discussed as they were affected by external factors such as the geometric model of structure parameters, slenderness ratio, gradient index, number of turns of an electromagnetic coil, airflow velocity, and temperature. The electromechanical coupling coefficient \( k_{{33}}\) was 71%. The results show that this proposed harvester can achieve an optimal harvesting effect by adjusting the parameters appropriately, and collect energy in thermal and supersonic environments using the GMF, which provides power to sensors of the health monitoring system of the aircraft’s own structure.



中文翻译:

超音速气动能量收集器:具有巨大磁致伸缩薄膜的功能梯度材料梁

在这项研究中,选择了具有巨磁致伸缩薄膜 (GMF) 的简支功能梯度材料梁作为能量收集器。基于GMF的大变形理论和维拉里效应,利用Hamilton原理,利用活塞理论模拟了整个结构在超音速气动压力和热环境下的动力学方程,模拟了GMF的能量收集效应使用 Runge-Kutta 算法。在临界颤振速度以下,讨论了最大电压输出和能量收集结果,因为它们受结构参数几何模型、长细比、梯度指数、电磁线圈匝数、气流速度等外部因素的影响。温度。机电耦合系数\( k_{{33}}\)为 71%。结果表明,该收集器可以通过适当调整参数来实现最佳收集效果,并使用 GMF 在热和超音速环境中收集能量,为飞机自身结构的健康监测系统的传感器提供电源。

更新日期:2021-09-04
down
wechat
bug