Skip to main content

Advertisement

Log in

A Supersonic Aerodynamic Energy Harvester: A Functionally Graded Material Beam with a Giant Magnetostrictive Thin Film

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this study, a simply supported functionally graded material beam with a giant magnetostrictive thin film (GMF) was selected as an energy harvester. Based on the theory of large deformation and the Villari effect of GMF, piston theory was used to simulate the dynamic equation of the whole structure under supersonic aerodynamic pressure and in a thermal environment by using Hamilton’s principle, and the energy harvesting effect of GMF was simulated by using a Runge–Kutta algorithm. Below the critical flutter velocity, the maximum voltage output and energy harvesting results were discussed as they were affected by external factors such as the geometric model of structure parameters, slenderness ratio, gradient index, number of turns of an electromagnetic coil, airflow velocity, and temperature. The electromechanical coupling coefficient \( k_{{33}}\) was 71%. The results show that this proposed harvester can achieve an optimal harvesting effect by adjusting the parameters appropriately, and collect energy in thermal and supersonic environments using the GMF, which provides power to sensors of the health monitoring system of the aircraft’s own structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lü CF, Zhang YY, Zhang H, Zhang ZC, Chen YS. Influences of environmental motion modes on the efficiency of ultrathin flexible piezoelectric energy harvesters. J Acta Mech Solida Sin. 2019;5:611–20.

    Article  Google Scholar 

  2. Li M, Wen Y, Li P. A rotation energy harvester employing cantilever beam and magnetostrictive/piezoelectric laminate transducer. J Sens Actuat A Phys. 2011;166(1):102–10.

    Article  Google Scholar 

  3. Clark WW. Vibration control with state-switched piezoelectric materials. J Intell Mater Syst Struct. 2000;11(4):263–71.

    Article  Google Scholar 

  4. Zhou ZG, Wang B. Investigation of anti-plane shear behavior of two collinear cracks in a piezoelectric materials strip by a new method. J Mech Res Commun. 2001;28(3):289–95.

    Article  MATH  Google Scholar 

  5. Wang L, Yuan FG. Vibration energy harvesting by magnetostrictive material. J Smart Mater Struct. 2008;17(4):45009–14.

    Article  Google Scholar 

  6. Quandt E. Giant magnetostrictive thin film materials and applications. J Alloys Compd. 1997;258(1–2):126–32.

    Article  Google Scholar 

  7. Wakiwaka H, Yamada Y, Watanabe T. Magnetostriction and magnetic characteristics of giant magnetostrictive thin film. J Int J Appl Electrom. 2002;14(1):435–8.

    Google Scholar 

  8. Zhao X, Lord DG. Application of the Villari effect to electric power harvesting. J Appl Phys. 2006;99:08M703.1-08M703.3.

    Article  Google Scholar 

  9. Yang Q, Chen H, Liu S. Dynamic modeling of a magnetic system constructed with giant magnetostrictive thin film using element-free Galerkin method. J IEEE Trans Cybern. 2006;42(9):939–42.

    Google Scholar 

  10. Torii Y, Wakiwaka H, Kiyomiya T. Tb–Fe–Co giant magnetostrictive thin film and its application to force sensor. J Magn Magn Mater. 2005;290(Part–2):861–4.

    Article  Google Scholar 

  11. Klokholm E. The measurement of magnetostriction in ferromagnetic thin films. J IEEE Trans Cybern. 1976;12(6):819–21.

    Google Scholar 

  12. Delince F, Genon A, Gillard JM. Numerical computation of the magnetostrictive effect in ferromagnetic materials. J Phys D. 1991;69:5710–94.

    Google Scholar 

  13. Benatar JG, Flatau AB. FEM implementation of a magnetostrictive transducer. J Smart Struct Syst. 2005;5764:482–93.

    Article  Google Scholar 

  14. Fung RF, Liu YT, Wang CC. Dynamic model of an electromagnetic actuator for vibration control of a cantilever beam with a tip mass. J Sound Vib. 2005;288(4–5):957–80.

    Article  MathSciNet  MATH  Google Scholar 

  15. Cao S, Zheng J, Guo Y. Dynamic characteristics of Galfenol cantilever energy harvester. J IEEE ASME Trans Mechatron. 2015;51(3):1–4.

    Google Scholar 

  16. Liu Y, He XY, Liu S. A novel broadband vibration energy harvester. J Appl Mech Mater. 2014;644–650:3560–3.

    Article  Google Scholar 

  17. Xu X, Han Q, Chu F. Vibration suppression of a rotating cantilever beam under magnetic excitations by applying the magnetostrictive material. J Intell Mater Syst Struct. 2019;30(4):576–92.

    Article  Google Scholar 

  18. Behrokh A, Ghader R, Rasool S. Stability analysis of a capacitive fgm micro-beam using modified couple stress theory. J Acta Mech Solida Sin. 2013;04(26):100–13.

    Google Scholar 

  19. Zhang YW, Lu YN, Chen LQ. Energy harvesting via nonlinear energy sink for whole-spacecraft. J Sci China Technol Sci. 2019;62(9):1483–91.

    Article  Google Scholar 

  20. Ma LS, Zhang L. Exact solutions for thermo-post-buckling of functionally graded material beams under in-plane thermal loading. J Lanzhou Univ Technol. 2015;41(1):164–7 ((in Chinese)).

    Google Scholar 

  21. He HN, Yu KP. Postthermal buckling behavior of FGM beams considering the influence of heat on material parameters. J Eng Mech. 2019;036(004):52–61.

    Google Scholar 

  22. Shouman AR, Donaldson AB, Tsao HY. Exact solution to the one-dimensional stationary energy equation for a self-heating slab. J Combust Flame. 1974;23(1):17–28.

    Article  Google Scholar 

  23. Body C, Reyne G, Meunier G. Nonlinear finite element modelling of magneto-mechanical phenomenon in giant magnetostrictive thin films. J IEEE T Magn. 1997;33(2):1620–3.

    Article  Google Scholar 

  24. Gao ZW, Zhou YH. A magneto-mechanical fully coupled model for giant magnetostriction in high temperature superconductor. J Acta Mech Solida Sin. 2015;28(4):353–9.

    Article  Google Scholar 

  25. Gregg JF, Allen W, Ounadjela K, Viret M, Coey JMD. Giant magnetoresistive effects in a single element magnetic thin film. J Phys Rev Lett. 1996;77(8):1580–3.

    Article  Google Scholar 

  26. Tse WK, Macdonald AH. Giant magneto-optical Kerr effect and universal faraday effect in thin-film topological insulators. J Phys Rev Lett. 2010;105(5):057401.

    Article  Google Scholar 

  27. Hylton TL, Parker MA, Coffey KR. Magnetostatically induced giant magnetoresistance in patterned NiFe/Ag multilayer thin films. J Appl Phys Lett. 1995;67(8):1154–6.

    Article  Google Scholar 

  28. Buznikov NA, Kim CO. Modeling of torsion stress giant magnetoimpedance in amorphous wires with negative magnetostriction. J Magn Magn Mater. 2007;315(2):89–94.

    Article  Google Scholar 

  29. Guisasola J, Zuza K, Almudi JM. An analysis of how electromagnetic induction and Faraday’s law are presented in general physics textbooks, focusing on learning difficulties. Eur J Phys. 2013;34(4):1015–24.

  30. Fu YM, Hu SM, Mao YQ. Nonlinear transient response of functionally graded shallow spherical shells subjected to mechanical load and unsteady temperature field. J Acta Mech Solida Sin. 2014;5:496–508.

    Article  Google Scholar 

  31. He G, Wang D, Yang X. Analytical solutions for free vibration and buckling of composite beams using a higher order beam theory. J Acta Mech Solida Sin. 2016;29(003):300–15.

    Article  Google Scholar 

  32. Zhang Y, Yang X, Zhang W. Modeling and stability analysis of a flexible rotor based on the Timoshenko beam theory. J Acta Mech Solida Sin. 2019;33:5.

    Google Scholar 

  33. Bao C, Cai L, Shi K. Improved normalization method for ductile fracture toughness determination based on dimensionless load separation principle. J Acta Mech Solida Sin. 2015;28(2):168–81.

    Article  Google Scholar 

  34. Zheng GY, Yang YR. Chaotic motions and limit cycle flutter of two-dimensional wing in supersonic flow. J Acta Mech Solida Sin. 2008;21(5):441–8.

    Article  Google Scholar 

  35. Xue Y, Li J, Li F. Flutter and thermal buckling properties and active control of functionally graded piezoelectric material plate in supersonic airflow. J Acta Mech Solida Sin. 2020;2:692–706.

    Article  Google Scholar 

  36. Sohn KJ, Kim JH. Structural stability of functionally graded panels subjected to aero-thermal loads. J Compos Struct. 2008;82(3):317–25.

    Article  Google Scholar 

  37. Yao MH, Chen YP, Zhang W. Nonlinear vibrations of blade with varying rotating speed. J Nonlinear Dyn. 2012;68(4):487–504.

    Article  MathSciNet  MATH  Google Scholar 

  38. Heller P. Analog demonstrations of Amperes law and magnetic flux. Am J Phys. 1992;60(1):17–25.

    Article  Google Scholar 

  39. Xiong YB, Long SY, Hu D. A meshless local Petrov–Galerkin method for geometrically nonlinear problems. J Acta Mech Solida Sin. 2005;18(4):348–56.

    Google Scholar 

  40. Ghayesh MH, Amabili M. Steady-state transverse response of an axially moving beam with time-dependent axial speed. J Nonlinear Mech. 2013;49:40–9.

    Article  Google Scholar 

  41. Zhao WJ, Chen LQ. Iterative algorithm for axially accelerating strings with integral constitutive law. J Acta Mech Solida Sin. 2008;21(5):449–56.

    Article  Google Scholar 

  42. Ni Q, Zhang Z, Wang L. Nonlinear dynamics and synchronization of two coupled pipes conveying pulsating fluid. J Acta Mech Solida Sin. 2014;27(002):162–71.

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this paper was supported by the National Natural Science Foundation of China (Grant Nos. 12022213, 11772205, 11902203, and 12002217) and Liaoning Revitalization Talents Program (XLYC1807172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijiao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Z., Chen, W., Zang, J. et al. A Supersonic Aerodynamic Energy Harvester: A Functionally Graded Material Beam with a Giant Magnetostrictive Thin Film. Acta Mech. Solida Sin. 35, 161–173 (2022). https://doi.org/10.1007/s10338-021-00265-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00265-5

Keywords

Navigation