当前位置: X-MOL 学术Biotechnol. Bioproc. E. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioactive Porous Biocomposites Coated Magnesium Alloy Implant for Bone Rejuvenation Using a Fracture in Rat Model
Biotechnology and Bioprocess Engineering ( IF 2.5 ) Pub Date : 2021-07-12 , DOI: 10.1007/s12257-020-0006-9
Peng Liu 1 , Yuqiang Man 1 , Yusong Bao 1
Affiliation  

Bone fractures/defects are normal in more established individuals experiencing osteoporosis. In this work, we have explored osteoblast bond, multiplication, and separation on biocomposites of bioactive dual minerals substituted hydroxyapatite/alginate-chitosan/graphene oxide porous biocomposites coated magnesium alloy (AZ91 Mg alloy). Hydroxyapatite is one the most important mineral constituents for bony which, due to its bioactive and histocompatible properties, is commonly used as a material for hard tissue substitution. However, the use of apatite as hard tissue implants is restricted due to its fragile nature and reduced mechanical properties. To overcome this defect and to generate suitable bone implant material, dual minerals substituted hydroxyapatite (DM-HAP) is combined with biodegradable polymer alginate-chitosan (ALG-CS). Graphene oxide (GO) is integrated into the biocomposite, which has long been believed for soft and hard tissue implants owing to its excellent structural and mechanical properties, to enhance the mechanical properties of the biocomposite. Graphene oxide grounds are most important for the reconstruction of bone; new, outstanding DM-HAP/ALG-CS/GO scaffold on Mg alloy has been developed. As developed coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX). Besides, the mechanical strength of the coating has also been assessed using adhesion and Vickers micro-hardness tests. In furtherer, the antibacterial activity of the composite was studied against Staphylococcus aureus and Escherichia coli and cell viability were observed in vitro against osteoblast cells and in vivo in rats. As a result, the results obtained propose that DM-HAP/ALG-CS/GO biocomposite can be believed as a prospective applicant for biomedical applications.



中文翻译:

生物活性多孔生物复合材料涂层镁合金植入物用于大鼠模型骨折的骨再生

在患有骨质疏松症的更成熟的个体中,骨折/缺陷是正常的。在这项工作中,我们探索了生物活性双矿物质取代羟基磷灰石/海藻酸盐-壳聚糖/氧化石墨烯多孔生物复合材料包覆镁合金(AZ91 镁合金)的生物复合材料的成骨细胞键、增殖和分离。羟基磷灰石是骨最重要的矿物成分之一,由于其生物活性和组织相容性,通常用作硬组织替代材料。然而,磷灰石作为硬组织植入物的使用由于其易碎的性质和降低的机械性能而受到限制。为了克服这一缺陷并产生合适的骨植入材料,双矿物质取代羟基磷灰石 (DM-HAP) 与可生物降解的聚合物海藻酸盐-壳聚糖 (ALG-CS) 相结合。氧化石墨烯(GO)被整合到生物复合材料中,由于其优异的结构和机械性能,长期以来一直被认为用于软组织和硬组织植入物,以提高生物复合材料的机械性能。氧化石墨烯对骨骼重建最重要;已经开发出新的、出色的 DM-HAP/ALG-CS/GO 镁合金支架。开发的涂层通过 X 射线衍射 (XRD) 和扫描电子显微镜和能量色散 X 射线分析 (SEM-EDX) 进行表征。此外,还使用附着力和维氏显微硬度测试评估了涂层的机械强度。此外,还研究了复合材料的抗菌活性 由于其优异的结构和机械性能,长期以来一直被认为用于软和硬组织植入物,以提高生物复合材料的机械性能。氧化石墨烯对骨骼重建最重要;已经开发出新的、出色的 DM-HAP/ALG-CS/GO 镁合金支架。开发的涂层通过 X 射线衍射 (XRD) 和扫描电子显微镜和能量色散 X 射线分析 (SEM-EDX) 进行表征。此外,还使用附着力和维氏显微硬度测试评估了涂层的机械强度。此外,还研究了复合材料的抗菌活性 由于其优异的结构和机械性能,长期以来一直被认为用于软组织和硬组织植入物,以提高生物复合材料的机械性能。氧化石墨烯对骨骼重建最重要;已经开发出新的、出色的 DM-HAP/ALG-CS/GO 镁合金支架。开发的涂层通过 X 射线衍射 (XRD) 和扫描电子显微镜和能量色散 X 射线分析 (SEM-EDX) 进行表征。此外,还使用附着力和维氏显微硬度测试评估了涂层的机械强度。此外,还研究了复合材料的抗菌活性 已开发出优异的 DM-HAP/ALG-CS/GO 镁合金支架。开发的涂层通过 X 射线衍射 (XRD) 和扫描电子显微镜和能量色散 X 射线分析 (SEM-EDX) 进行表征。此外,还使用附着力和维氏显微硬度测试评估了涂层的机械强度。此外,还研究了复合材料的抗菌活性 已开发出优异的 DM-HAP/ALG-CS/GO 镁合金支架。开发的涂层通过 X 射线衍射 (XRD) 和扫描电子显微镜和能量色散 X 射线分析 (SEM-EDX) 进行表征。此外,还使用附着力和维氏显微硬度测试评估了涂层的机械强度。此外,还研究了复合材料的抗菌活性在体外对成骨细胞和在大鼠体内观察到金黄色葡萄球菌大肠杆菌以及细胞活力。因此,获得的结果表明 DM-HAP/ALG-CS/GO 生物复合材料可以被认为是生物医学应用的潜在申请人。

更新日期:2021-07-12
down
wechat
bug