Skip to main content
Log in

Bioactive Porous Biocomposites Coated Magnesium Alloy Implant for Bone Rejuvenation Using a Fracture in Rat Model

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Bone fractures/defects are normal in more established individuals experiencing osteoporosis. In this work, we have explored osteoblast bond, multiplication, and separation on biocomposites of bioactive dual minerals substituted hydroxyapatite/alginate-chitosan/graphene oxide porous biocomposites coated magnesium alloy (AZ91 Mg alloy). Hydroxyapatite is one the most important mineral constituents for bony which, due to its bioactive and histocompatible properties, is commonly used as a material for hard tissue substitution. However, the use of apatite as hard tissue implants is restricted due to its fragile nature and reduced mechanical properties. To overcome this defect and to generate suitable bone implant material, dual minerals substituted hydroxyapatite (DM-HAP) is combined with biodegradable polymer alginate-chitosan (ALG-CS). Graphene oxide (GO) is integrated into the biocomposite, which has long been believed for soft and hard tissue implants owing to its excellent structural and mechanical properties, to enhance the mechanical properties of the biocomposite. Graphene oxide grounds are most important for the reconstruction of bone; new, outstanding DM-HAP/ALG-CS/GO scaffold on Mg alloy has been developed. As developed coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX). Besides, the mechanical strength of the coating has also been assessed using adhesion and Vickers micro-hardness tests. In furtherer, the antibacterial activity of the composite was studied against Staphylococcus aureus and Escherichia coli and cell viability were observed in vitro against osteoblast cells and in vivo in rats. As a result, the results obtained propose that DM-HAP/ALG-CS/GO biocomposite can be believed as a prospective applicant for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, S. J., T. H. Kim, J. W. Choi, and I. K. Kwon (2012) Current perspectives of biodegradable drug-eluting stents for improved safety. Biotechnol. Bioprocess Eng. 17: 912–924.

    Article  CAS  Google Scholar 

  2. You, S., Y. Huang, K. U. Kainer, and N. Hort (2017) Recent research and developments on wrought magnesium alloys. J. Magnes Alloy. 5: 239–253.

    Article  CAS  Google Scholar 

  3. Zeng, R., W. Dietzel, F. Witte, N. Hort, and C. Blawert (2008) Progress and challenge for magnesium alloys as biomaterials. Adv. Eng. Mater. 10: B3–B14.

    Article  CAS  Google Scholar 

  4. Wen, C., X. Zhan, X. Huang, F. Xu, L. Luo, and C. Xia (2017) Characterization and corrosion properties of hydroxyapatite/graphene oxide bio-composite coating on magnesium alloy by one-step micro-arc oxidation method. Surf. Coat. Technol. 317: 125–133.

    Article  CAS  Google Scholar 

  5. Guo, K. W. (2010) A review of magnesium/magnesium alloys corrosion and its protection. Recent Pat. Corros Sci. 2: 13–21.

    Article  CAS  Google Scholar 

  6. Wu, C. Y. and J. Zhang (2011) State-of-art on corrosion and protection of magnesium alloys based on patent literatures. Trans. Nonferrous Met. Soc. China. 21: 892–902.

    Article  CAS  Google Scholar 

  7. Sundarabharathi, L., M. Chinnaswamy, D. Ponnamma, H. Parangusan, and M. A. A. Al-Maadeed (2020) La3+/Sr2+ Dual-substituted hydroxyapatite nanoparticles as bone substitutes: synthesis, characterization, in vitro bioactivity and cytocompatibility. J. Nanosci. Nanotechnol. 20: 6344–6353.

    Article  CAS  PubMed  Google Scholar 

  8. Cacciotti, I. (2019) Multisubstituted hydroxyapatite powders and coatings: The influence of the codoping on the hydroxyapatite performances. Int. J. Appl. Ceram. Technol. 16: 1864–1884.

    Article  CAS  Google Scholar 

  9. Kandasamy, S., V. Narayanan, and S. Sumathi (2020) Zinc and manganese substituted hydroxyapatite/CMC/PVP electrospun composite for bone repair applications. Int. J. Biol. Macromol. 145: 1018–1030.

    Article  CAS  PubMed  Google Scholar 

  10. Ananth, K. P., J. Sun, and J. Bai (2018) An innovative approach to manganese-substituted hydroxyapatite coating on zinc oxide-coated 316L SS for implant application. Int. J. Mol. Sci. 19: 2340.

    Article  PubMed Central  CAS  Google Scholar 

  11. Cuozzo, R. C., S. C. Sartoretto, R. F. B. Resende, A. T. N. N. Alves, E. Mavropoulos, M. H. Prado da Silva, and M. D. Calasans-Maia (2020) Biological evaluation of zinc-containing calcium alginate-hydroxyapatite composite microspheres for bone regeneration. J. Biomed. Mater. Res. 108: 2610–2620.

    Article  CAS  Google Scholar 

  12. Hafeez, M. A., A. Farooq, A. Zang, A. Saleem, and K. M. Deen (2020) Phosphate chemical conversion coatings for magnesium alloys: a review. J. Coat. Technol. Res. 17: 827–849.

    Article  CAS  Google Scholar 

  13. Moseke, C., Y. A. Alramadan, E. Vorndran, and P. Elter (2019) Electrophoretic deposition of zinc-doped hydroxyapatite coatings on titanium: deposition kinetics and coating morphology. Int. J. Surf. Sci. Eng. 13: 201–219.

    Article  Google Scholar 

  14. Lou, C. W., S. T. Kuo, S. P. Wen, and J. H. Lin (2014) Braided bone scaffolds made by braiding polyvinyl alcohol and cross-linked by glutaraldehyde: manufacturing process and structure evaluation. Adv. Mater. Res. 910: 145–148.

    Article  CAS  Google Scholar 

  15. Lin, J. H., M. C. Lee, C. K. Chen, C. L. Huang, Y. S. Chen, S. P. Wen, S. T. Kuo, and C. W. Lou (2017) Recovery evaluation of rats’ damaged tibias: Implantation of core-shell structured bone scaffolds made using hollow braids and a freeze-thawing process. Mater. Sci. Eng. C. Mater. Biol. Appl. 79: 481–490.

    Article  CAS  PubMed  Google Scholar 

  16. Esmeryan, K. D., C. E. Castano, T. A. Chaushev, R. Mohammadi, and T. G. Vladkova (2019) Silver-doped superhydrophobic carbon soot coatings with enhanced wear resistance and antimicrobial performance. Colloids Surf. A. Physicochem. Eng. Asp. 582: 123880.

    Article  CAS  Google Scholar 

  17. Chudinova, E., M. Surmeneva, A. Koptyug, K. Loza, O. Prymak, M. Epple, and R. Surmenev (2019) Surface modification of Ti6Al4V alloy scaffolds manufactured by electron beam melting. J. Phy. Conf. Ser. 1145: 012030.

    Article  CAS  Google Scholar 

  18. Li, T. T., L. Ling, M. C. Lin, Q. Jiang, Q. Lin, J. H. Lin, and C. W. Lou (2019) Properties and mechanism of hydroxyapatite coating prepared by electrodeposition on a braid for biodegradable bone scaffolds. Nanomaterials. 9: 679.

    Article  CAS  PubMed Central  Google Scholar 

  19. Luzi, F., D. Puglia, and L. Torre (2019) Natural fiber biodegradable composites and nanocomposites: A biomedical application. pp. 179–201. In: D. Verma, E. Fortunati, S. Jain, and X. Zhang (eds.). Biomass, Biopolymer-Based Materials, and Bioenergy. Woodhead Publishing, Duxford, UK.

    Chapter  Google Scholar 

  20. Priyadarsini, S., S. Mohanty, S. Mukherjee, S. Basu, and M. Mishra (2018) Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostruct. Chem. 8: 123–137.

    Article  CAS  Google Scholar 

  21. Sowjanya, J. A., J. Singh, T. Mohita, S. Sarvanan, A. Moorthi, N. Srinivasan, and N. Selvamurugan (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf. B. Biointerfaces. 109: 294–300.

    Article  CAS  PubMed  Google Scholar 

  22. Schmidt, R., A. Gebert, M. Schumacher, V. Hoffmann, A. Voss, S. Pilz, and M. Gelinsky (2020) Electrodeposition of Sr-substituted hydroxyapatite on low modulus beta-type Ti-45Nb and effect on in vitro Sr release and cell response. Mater. Sci. Eng. C. Mater. Biol. Appl. 108: 110425.

    Article  CAS  PubMed  Google Scholar 

  23. Nawawi, N. A., A. S. F. Alqap, and I. Sopyan (2011) Recent progress on hydroxyapatite-based dense biomaterials for load bearing bone substitutes. Recent Pat. Mater. Sci. 4: 63–80.

    Article  CAS  Google Scholar 

  24. Gibson, I. R. and W. Bonfield (2002) Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatites. J. Mater. Sci. Mater. Med. 13: 685–693.

    Article  CAS  PubMed  Google Scholar 

  25. Aina, V., G. Lusvardi, B. Annaz, I. R. Gibson, F. E. Imrie, G. Malavasi, L. Menabue, G. Cerrato, and G. Martra (2012) Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. J. Mater. Sci. Mater. Med. 23: 2867–2879.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, C., J. Yuan, H. Li, and B. Jiang (2019) Role of substrates in the corrosion behaviors of micro-arc oxidation coatings on magnesium alloys. Metals. 9: 1100.

    Article  CAS  Google Scholar 

  27. Furko, M., V. Havasi, Z. Kónya, A. Grünewald, R. Detsch, A. R. Boccaccini, and C. Balázsi (2018) Development and characterization of multi-element doped hydroxyapatite bioceramic coatings on metallic implants for orthopedic applications. J. Span. Ceram. Glass Soc. 57: 55–65.

    CAS  Google Scholar 

  28. Rojaee, R., M. Fathi, and K. Raeissi (2013) Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments. Appl. Surf. Sci. 285: 664–673.

    Article  CAS  Google Scholar 

  29. Ghedjemis, A., A. Benouadah, N. Fenineche, R. Ayeche, Z. Hatim, N. Drouiche, and H. Lounici (2019) Preparation of hydroxyapatite from dromedary bone by heat treatment. Int. J. Environ. Res. 13: 547–555.

    Article  CAS  Google Scholar 

  30. Golovanova, O. A. and S. A. Gerk (2020) Structural and morphological characteristics and dissolution behavior of carbonate hydroxyapatite prepared in the presence of proline. Inorg. Mater. 56: 543–551.

    Article  CAS  Google Scholar 

  31. Parcharoen, Y., P. Termsuksawad, and S. Sirivisoot (2016) Improved bonding strength of hydroxyapatite on titanium dioxide nanotube arrays following alkaline pretreatment for orthopedic implants. J. Nanomater. 2016: 9143969.

    Article  CAS  Google Scholar 

  32. Sikder, P., N. Koju, B. Lin, and S. B. Bhaduri (2019) Conventionally sintered hydroxyapatite-barium titanate piezo-biocomposites. Trans. Indian Inst. Met. 72: 2011–2018.

    Article  CAS  Google Scholar 

  33. Raita, M. S., S. L. Iconaru, A. Groza, C. Cimpeanu, G. Predoi, L. Ghegoiu, M. L. Badea, M. C. Chifiriuc, L. Marutescu, R. Trusca, C. F. Furnaris, C. S. Turculet, D. V. Enache, and D. Predoi (2020) Multifunctional hydroxyapatite coated with Arthemisia absinthium composites. Molecules. 25: 413.

    Article  CAS  PubMed Central  Google Scholar 

  34. Gayathri, B., N. Muthukumarasamy, D. Velauthapillai, S. B. Santhosh, and V. Asokan (2018) Magnesium incorporated hydroxyapatite nanoparticles: preparation, characterization, antibacterial and larvicidal activity. Arab. J. Chem. 11: 645–654.

    Article  CAS  Google Scholar 

  35. Liu, X., J. Wei, and S. Wei (2011) Biological effects of osteoblast-like cells on nanohydroxyapatite particles at a low concentration range. J. Nanomater. 2011: 104747.

    Article  CAS  Google Scholar 

  36. Keremidarska, M., E. Radeva, K. Eleršič, A. Iglič, L. Pramatarova, and N. Krasteva (2014) Plasma deposited composite coatings to control biological response of osteoblast-like MG-63 cells. J. Phys. Conf. Ser. 558: 012057.

    Article  Google Scholar 

  37. He, S., C. Atkinson, F. Qiao, X. Chen, and S. Tomlinson (2010) Ketamine-xylazine-acepromazine compared with isoflurane for anesthesia during liver transplantation in rodents. J. Am. Assoc. Lab. Anim. Sci. 49: 45–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Isler, S. C., E. Cansiz, C. Tanyel, M. Soluk, F. Selvi, and Z. Cebi (2011) The effect of irrigation temperature on bone healing. Int. J. Med. Sci. 8: 704–708.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu, H., R. Zhu, C. Liu, R. Ma, L. Wang, B. Chen, L. Li, J. Niu, D. Zhao, F. Mo, M. Fu, D. Brömme, D. Zhang, and S. Gao (2017) Evaluation of decalcification techniques for rat femurs using HE and immunohistochemical staining. Biomed. Res. Int. 2017: 9050754.

    PubMed  PubMed Central  Google Scholar 

  40. Fahami, A. and B. Nasiri-Tabrizi (2013) Characterization of mechanothermal-synthesized hydroxyapatite-magnesium titanate composite nanopowders. J. Adv. Ceram. 2: 63–70.

    Article  CAS  Google Scholar 

  41. Boanini, E., M. Gazzano, and A. Bigi (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 6: 1882–1894.

    Article  CAS  PubMed  Google Scholar 

  42. Gong, M., Q. Zhao, L. Dai, Y. Li, and T. Jiang (2017) Fabrication of polylactic acid/hydroxyapatite/graphene oxide composite and their thermal stability, hydrophobic and mechanical properties. J. Asian Ceram. Soc. 5: 160–168.

    Article  Google Scholar 

  43. Li, M., Q. Liu, Z. Jia, X. Xu, Y. Shi, Y. Cheng, Y. Zheng, T. Xi, and S. Wei (2013) Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings. Appl. Surf. Sci. 284: 804–810.

    Article  CAS  Google Scholar 

  44. Ramadas, M., G. Bharath, N. Ponpandian, and A. M. Ballamurugan (2017) Investigation on biophysical properties of Hydroxyapatite/Graphene oxide (HAp/GO) based binary nanocomposite for biomedical applications. Mater. Chem. Phys. 199: 179–184.

    Article  CAS  Google Scholar 

  45. Xu, T., J. M. Miszuk, Y. Zhao, H. Sun, and H. Fong (2015) Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv. Healthc. Mater. 4: 2238–2246.

    Article  CAS  PubMed  Google Scholar 

  46. Murugan, N., C. Murugan, and A. K. Sundramoorthy (2018) In vitro and in vivo characterization of mineralized hydroxyapatite/polycaprolactone-graphene oxide based bioactive multifunctional coating on Ti alloy for bone implant applications. Arab. J. Chem. 11: 959–969.

    Article  CAS  Google Scholar 

  47. Murugan, N., M. Chozhanathmisra, S. Sathishkumar, P. Karthikeyan, and R. Rajavel (2016) Corrosion and biodegradability evaluation of strontium substituted hydroxyapatite coating on surface treated AZ91 Mg alloy for biomedical application. Int. J. Pharm. Biol. Sci. 6: 184–190.

    Article  CAS  Google Scholar 

  48. Wang, H. X., S. K. Guan, X. Wang, C. X. Ren, and L. G. Wang (2010) In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater. 6: 1743–1748.

    Article  CAS  PubMed  Google Scholar 

  49. Gupta, B., N. Kumar, K. Panda, V. Kanan, S. Joshi, and I. Visoly-Fisher (2017) Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 7: 45030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, M., Q. Liu, Z. Jia, X. Xu, Y. Cheng, Y. Zheng, T. Xi, and S. Wei (2014) Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon. 67: 185–197.

    Article  CAS  Google Scholar 

  51. Yılmaz, E., B. Çakiroğlu, A. Gökçe, F. Findik, H. O. Gulsoy, N. Gulsoy, Ö. Mutlu, and M. Özacar (2019) Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition. Mater. Sci. Eng. C. Mater. Biol. Appl. 101: 292–305.

    Article  PubMed  CAS  Google Scholar 

  52. Peng, S., P. Feng, P. Wu, W. Huang, Y. Yang, W. Guo, C. Gao, and C. Shuai (2017) Graphene oxide as an interface phase between polyetheretherketone and hydroxyapatite for tissue engineering scaffolds. Sci. Rep. 7: 46604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zheng, H., R. Ma, M. Gao, X. Tian, Y. Q. Li, L. Zeng, and R. Li (2018) Antibacterial applications of graphene oxides: structure-activity relationships, molecular initiating events and biosafety. Sci. Bull. 63: 133–142.

    Article  CAS  Google Scholar 

  54. Ratheesh, G., J. R. Venugopal, A. Chinappan, H. Ezhilarasu, A. Sadiq, and S. Ramakrishna (2017) 3D Fabrication of polymeric scaffolds for regenerative therapy. ACS Biomater. Sci. Eng. 3: 1175–1194.

    Article  CAS  PubMed  Google Scholar 

  55. Samanta, S. K., K. B. Devi, P. Das, P. Mukherjee, A. Chanda, M. Roy, and S. K. Nandi (2019) Metallic ion doped tri-calcium phosphate ceramics: Effect of dynamic loading on in vivo bone regeneration. J. Mech. Behav. Biomed. Mater. 96: 227–235.

    Article  CAS  PubMed  Google Scholar 

  56. Rodrigues, A. F., L. Newman, D. A. Jasim, I. A. Vacchi, C. Ménard-Moyon, L. E. Crica, A. Bianco, K. Kostarelos, and C. Bussy (2018) Immunological impact of graphene oxide sheets in the abdominal cavity is governed by surface reactivity. Arch. Toxicol. 92: 3359–3379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusong Bao.

Ethics declarations

Animal Experiments were carried out following the Institutional Animal Care and Use Committee of the Department of Traumatic Orthopaedics, Zaozhuang Municipal Hospital (Approval number- 2020528-1) and no informed consent was required for this study

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Man, Y. & Bao, Y. Bioactive Porous Biocomposites Coated Magnesium Alloy Implant for Bone Rejuvenation Using a Fracture in Rat Model. Biotechnol Bioproc E 26, 359–368 (2021). https://doi.org/10.1007/s12257-020-0006-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0006-9

Keywords

Navigation