当前位置: X-MOL 学术Adv. Fiber Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flexural Strength and Load–Deflection Behaviour of Hybrid Thermoset Composites of Wood and Canola Biopolymers
Advanced Fiber Materials ( IF 17.2 ) Pub Date : 2021-07-12 , DOI: 10.1007/s42765-021-00089-5
Ikra Iftekhar Shuvo 1 , Md. Saiful Hoque 1 , Md. Shadhin 2 , Lovely K. M. Khandakar 2
Affiliation  

The study aims to incorporate cellulosic canola (Brassica napus L.) biopolymers with wood biomass to increase flexural strength more than wood fraction alone. A facile fabrication process—at ambient temperature—is employed for ease of producing two different sets of bio-composites utilizing unsaturated polyester resin: pristine composite structures of 100% wood and hybrid composite structures of a canola-wood blend. The curing process is accompanied by methyl ethyl ketone peroxide (MEKP). Besides the lightweight feature, the hybrid composite structures exhibit maximum flexural strength up to 59.6 and 89.58 MPa at 2.5 and 5% fibre polymer fraction, outperforming the pristine wood composites (49.25 MPa). Also, the bending behaviours of the composite structures are illustrated by the load–deflection curves and the associated SEM micrographs display their fractured and debonded surface at the cross-section. The novel canola fibre benefits from its inherent hollow architecture, facilitating an excellent strength to weight ratio for the thermoset composites. Interestingly, canola displays a fibre diameter and density of 79.80 (± 41.31) μm and 1.34 (± 0.0014) g/cc, contributing effectively towards the flexure performance and high packing density. The breaking tenacity (13.31 ± 4.59 g-force/tex) and tensile strength (174.93 ± 60.29) of canola fibres are comparable to other bast fibres. The synergy among fibre diameters, density and breaking tenacity creates a good interphase to successfully transfer the external compressive load from the resin matrix to the fibres. Further, the two-parameter Weibull distribution model is applied for predicting the failure and reliability probability of composite specimens against a wide range of compressive loads. Finally, prioritized SWOT factors have been summarized associated with the prospects and key challenges of canola biopolymers—an attempt to strategize the planning and decision-making process for a potential business environment. The introduction of canola into the plastic industries would ultimately promote the application of sustainable biopolymers in diverse grounds including the interior panels for aerospace, automotive, and furniture industries.

Graphic Abstract



中文翻译:

木材和油菜生物聚合物混合热固性复合材料的弯曲强度和负载-挠度行为

该研究旨在将纤维素双低油菜籽(Brassica napusL.) 具有木材生物质的生物聚合物比单独的木材部分增加更多的弯曲强度。采用一种简便的制造工艺(在环境温度下),可利用不饱和聚酯树脂轻松生产两组不同的生物复合材料:100% 木材的原始复合结构和油菜籽-木材混合物的混合复合结构。固化过程伴随着过氧化甲乙酮 (MEKP)。除了轻质特性外,混合复合结构在纤维聚合物含量为 2.5% 和 5% 的情况下表现出高达 59.6 和 89.58 MPa 的最大弯曲强度,优于原始木质复合材料 (49.25 MPa)。此外,复合结构的弯曲行为由载荷-挠度曲线说明,相关的 SEM 显微照片显示其横截面的断裂和脱粘表面。新型油菜籽纤维得益于其固有的中空结构,有助于热固性复合材料实现出色的强度重量比。有趣的是,双低油菜籽的纤维直径和密度为 79.80 (± 41.31) μm 和 1.34 (± 0.0014) g/cc,有效地提高了挠曲性能和高填充密度。双低油菜籽纤维的断裂强度 (13.31 ± 4.59 g-force/tex) 和拉伸强度 (174.93 ± 60.29) 与其他韧皮纤维相当。纤维直径、密度和断裂强度之间的协同作用创造了一个良好的界面,以成功地将外部压缩载荷从树脂基体转移到纤维上。此外,二参数威布尔分布模型用于预测复合试件在大范围压缩载荷下的失效和可靠性概率。最后,总结了与油菜生物聚合物的前景和主要挑战相关的优先 SWOT 因素——试图为潜在的商业环境制定规划和决策过程。将油菜籽引入塑料行业最终将促进可持续生物聚合物在不同领域的应用,包括航空航天、汽车和家具行业的内饰板。

图形摘要

更新日期:2021-07-12
down
wechat
bug