Skip to main content

Advertisement

Log in

Flexural Strength and Load–Deflection Behaviour of Hybrid Thermoset Composites of Wood and Canola Biopolymers

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The study aims to incorporate cellulosic canola (Brassica napus L.) biopolymers with wood biomass to increase flexural strength more than wood fraction alone. A facile fabrication process—at ambient temperature—is employed for ease of producing two different sets of bio-composites utilizing unsaturated polyester resin: pristine composite structures of 100% wood and hybrid composite structures of a canola-wood blend. The curing process is accompanied by methyl ethyl ketone peroxide (MEKP). Besides the lightweight feature, the hybrid composite structures exhibit maximum flexural strength up to 59.6 and 89.58 MPa at 2.5 and 5% fibre polymer fraction, outperforming the pristine wood composites (49.25 MPa). Also, the bending behaviours of the composite structures are illustrated by the load–deflection curves and the associated SEM micrographs display their fractured and debonded surface at the cross-section. The novel canola fibre benefits from its inherent hollow architecture, facilitating an excellent strength to weight ratio for the thermoset composites. Interestingly, canola displays a fibre diameter and density of 79.80 (± 41.31) μm and 1.34 (± 0.0014) g/cc, contributing effectively towards the flexure performance and high packing density. The breaking tenacity (13.31 ± 4.59 g-force/tex) and tensile strength (174.93 ± 60.29) of canola fibres are comparable to other bast fibres. The synergy among fibre diameters, density and breaking tenacity creates a good interphase to successfully transfer the external compressive load from the resin matrix to the fibres. Further, the two-parameter Weibull distribution model is applied for predicting the failure and reliability probability of composite specimens against a wide range of compressive loads. Finally, prioritized SWOT factors have been summarized associated with the prospects and key challenges of canola biopolymers—an attempt to strategize the planning and decision-making process for a potential business environment. The introduction of canola into the plastic industries would ultimately promote the application of sustainable biopolymers in diverse grounds including the interior panels for aerospace, automotive, and furniture industries.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this article.

References

  1. Zhu G, Sun G, Yu H, et al. Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading. Int J Mech Sci. 2018;135:458–83. https://doi.org/10.1016/j.ijmecsci.2017.11.017.

    Article  Google Scholar 

  2. Sun G, Li S, Li G, Li Q. On crashing behaviors of aluminium/CFRP tubes subjected to axial and oblique loading: an experimental study. Compos Part B Eng. 2018;145:47–56. https://doi.org/10.1016/j.compositesb.2018.02.001.

    Article  CAS  Google Scholar 

  3. Zhu G, Sun G, Li G, et al. Modeling for CFRP structures subjected to quasi-static crushing. Compos Struct. 2018;184:41–55. https://doi.org/10.1016/j.compstruct.2017.09.001.

    Article  Google Scholar 

  4. Sun G, Tong S, Chen D, et al. Mechanical properties of hybrid composites reinforced by carbon and basalt fibers. Int J Mech Sci. 2018;148:636–51. https://doi.org/10.1016/j.ijmecsci.2018.08.007.

    Article  Google Scholar 

  5. de Paiva JMF, dos Santos ADN, Rezende MC. Mechanical and morphological characterizations of carbon fiber fabric reinforced epoxy composites used in aeronautical field. Mater Res. 2009;12:367–74. https://doi.org/10.1590/S1516-14392009000300019.

    Article  Google Scholar 

  6. Zhang K, Shi D, Wang W, Wang Q. Mechanical characterization of hybrid lattice-to-steel joint with pyramidal CFRP truss for marine application. Compos Struct. 2017;160:1198–204. https://doi.org/10.1016/j.compstruct.2016.11.005.

    Article  Google Scholar 

  7. Chen D, Sun G, Meng M, et al. Residual crashworthiness of CFRP structures with pre-impact damage—an experimental and numerical study. Int J Mech Sci. 2018;149:122–35. https://doi.org/10.1016/j.ijmecsci.2018.08.030.

    Article  Google Scholar 

  8. Zainudin ES, Yan LH, Haniffah WH, et al. Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites. Polym Compos. 2014;35:1418–25. https://doi.org/10.1002/pc.22794.

    Article  CAS  Google Scholar 

  9. Gupta M, Singh R. PLA-coated sisal fibre-reinforced polyester composite: water absorption, static and dynamic mechanical properties. J Compos Mater. 2019;53:65–72. https://doi.org/10.1177/0021998318780227.

    Article  CAS  Google Scholar 

  10. Abdulkareem S, Adeniyi A. Production of particle boards using polystyrene and bamboo wastes. Niger J Technol. 2017. https://doi.org/10.4314/njt.v36i3.18.

    Article  Google Scholar 

  11. Adeniyi AG, Ighalo JO, Onifade DV. Banana and plantain fiber-reinforced polymer composites. J Polym Eng. 2019;39:597–611. https://doi.org/10.1515/polyeng-2019-0085.

    Article  CAS  Google Scholar 

  12. Hassan A, Rafiq MIM, Ariffin MIZ. Improving thermal and mechanical properties of injection moulded Kenaf fibre-reinforced polyhydroxy-butyrate composites through fibre surface treatment. BioResources. 2019; 14

  13. Wang X, Chang L, Shi X, Wang L. Effect of hot-alkali treatment on the structure composition of jute fabrics and mechanical properties of laminated composites. Materials (Basel). 2019;12:1386. https://doi.org/10.3390/ma12091386.

    Article  CAS  Google Scholar 

  14. Abdulkareem SA, Adeniyi AG. Tensile and water absorbing properties of natural fibre reinforced plastic composites from waste polystyrene and rice husk. ABUAD J Eng Res Dev. 2018; 1

  15. Arifuzzaman Khan GM, Alam Shams MS, Kabir MR, et al. Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low-density polyethylene composites. J Appl Polym Sci. 2013;128:1020–9. https://doi.org/10.1002/app.38197.

    Article  CAS  Google Scholar 

  16. Shuvo II, Rahman M, Vahora T, et al. Producing light-weight bast fibers from canola biomass for technical textiles. Text Res J. 2019;90:1311–25. https://doi.org/10.1177/0040517519886636.

    Article  CAS  Google Scholar 

  17. Shuvo II, Rahman M, Duncan R, et al. A new generation of textile fibre from canola biomass and the impact of cultivar on fibre quality. In: Integrating Design with Sustainable Technology, at The 91st Textile Institute World Conference (TIWC). Textile Institute, Leeds (2018)

  18. Shuvo II. A holistic decision-making approach for identifying influential parameters affecting sustainable production process of canola bast fibres and predicting end-use textile choice using principal component analysis (PCA). Heliyon. 2021;7: e06235. https://doi.org/10.1016/j.heliyon.2021.e06235.

    Article  Google Scholar 

  19. Shuvo II, DuCharme S. Inter-comparison of two instrumental test methods for diameter analysis of fibre materials: scope and challenges. J Inst Eng Ser E. 2021. https://doi.org/10.1007/s40034-021-00206-4.

    Article  Google Scholar 

  20. Shuvo II. Fibre attributes and mapping the cultivar influence of different industrial cellulosic crops (cotton, hemp, flax, and canola) on textile properties. Bioresour Bioprocess. 2020;7:51. https://doi.org/10.1186/s40643-020-00339-1.

    Article  Google Scholar 

  21. Ary Subagia IDG, Kim Y, Tijing LD, et al. Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers. Compos Part B Eng. 2014;58:251–8. https://doi.org/10.1016/j.compositesb.2013.10.027.

    Article  CAS  Google Scholar 

  22. Swolfs Y, Gorbatikh L, Verpoest I. Fibre hybridisation in polymer composites: a review. Compos Part A Appl Sci Manuf. 2014;67:181–200. https://doi.org/10.1016/j.compositesa.2014.08.027.

    Article  CAS  Google Scholar 

  23. Zhang J, Chaisombat K, He S, Wang CH. Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Mater Des. 2012;36:75–80. https://doi.org/10.1016/j.matdes.2011.11.006.

    Article  CAS  Google Scholar 

  24. Yusoff RB, Takagi H, Nakagaito AN. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind Crops Prod. 2016;94:562–73. https://doi.org/10.1016/j.indcrop.2016.09.017.

    Article  CAS  Google Scholar 

  25. Zhang L, Hu Y. Novel lignocellulosic hybrid particleboard composites made from rice straws and coir fibers. Mater Des. 2014;55:19–26. https://doi.org/10.1016/j.matdes.2013.09.066.

    Article  CAS  Google Scholar 

  26. Islam MS, Hasbullah NAB, Hasan M, et al. Physical, mechanical and biodegradable properties of kenaf/coir hybrid fiber reinforced polymer nanocomposites. Mater Today Commun. 2015;4:69–76. https://doi.org/10.1016/j.mtcomm.2015.05.001.

    Article  CAS  Google Scholar 

  27. Bhagat VK, Biswas S, Dehury J. Physical, mechanical, and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites. Polym Compos. 2014;35:925–30. https://doi.org/10.1002/pc.22736.

    Article  CAS  Google Scholar 

  28. Papadopoulos AN, Hague JR. The potential for using flax (Linum usitatissimum L.) shiv as a lignocellulosic raw material for particleboard. Ind Crops Prod. 2003;17:143–7. https://doi.org/10.1016/S0926-6690(02)00094-8.

    Article  CAS  Google Scholar 

  29. Han G, Zhang C, Zhang D, et al. Upgrading of urea formaldehyde-bonded reed and wheat straw particleboards using silane coupling agents. J Wood Sci. 1998;44:282–6. https://doi.org/10.1007/BF00581308.

    Article  CAS  Google Scholar 

  30. Hashim R, Nadhari WNAW, Sulaiman O, et al. Characterization of raw materials and manufactured binderless particleboard from oil palm biomass. Mater Des. 2011;32:246–54. https://doi.org/10.1016/j.matdes.2010.05.059.

    Article  CAS  Google Scholar 

  31. Kibria ASMG. Physico-mechanical comparison of urea formalde-hyde bonded particle board manufactured from jute sticks and wood of Trewia nudiflora. Ann For Res. 2012. https://doi.org/10.15287/afr.2012.69.

    Article  Google Scholar 

  32. Guler C, Copur Y, Tascioglu C. The manufacture of particleboards using mixture of peanut hull (Arachis hypoqaea L.) and European Black pine (Pinus nigra Arnold) wood chips. Bioresour Technol. 2008;99:2893–7. https://doi.org/10.1016/j.biortech.2007.06.013.

    Article  CAS  Google Scholar 

  33. Bektas I, Guler C, Kalaycioğlu H, et al. The manufacture of particleboards using sunflower stalks (helianthus annuus l.) and poplar wood (populus alba L.). J Compos Mater. 2005;39:467–73. https://doi.org/10.1177/0021998305047098.

    Article  CAS  Google Scholar 

  34. Nemli G, Kırcı H, Serdar B, Ay N. Suitability of kiwi (Actinidia sinensis Planch.) prunings for particleboard manufacturing. Ind Crops Prod. 2003;17:39–46. https://doi.org/10.1016/S0926-6690(02)00057-2.

    Article  CAS  Google Scholar 

  35. Shuvo II. Hollow canola-wood thermoset composites from concept to completion: fabrication, performance, failure and reliability analysis. SN Appl Sci. 2020;2:2087. https://doi.org/10.1007/s42452-020-03931-4.

    Article  CAS  Google Scholar 

  36. Mohanty AK, Misra M, Drzal LT. Natural fibers, biopolymers, and biocomposites. CRC Press; 2005.

    Book  Google Scholar 

  37. ASTM International ASTM D1445/D1445M-12, Standard test method for breaking strength and elongation of cotton fibers (Flat Bundle Method). West Conshohocken (2012)

  38. ASTM D3410 Standard test method for compressive properties of polymer matrix composite materials with unsupported gage section by shear loading (2016)

  39. Lochab B, Shukla S, Varma IK. Naturally occurring phenolic sources: monomers and polymers. RSC Adv. 2014;4:21712–52. https://doi.org/10.1039/C4RA00181H.

    Article  CAS  Google Scholar 

  40. ASTM D276 Standard test methods for identification of fibers in textiles (2012)

  41. Kozlowski R. Handbook of natural fibres, vol. 1. Cambridge: Woodhead Publishing Ltd 2012

  42. Kozlowski R Handbook of natural fibres, vol. 2, 1st ed. Cambridge: Woodhead Publishing 2012

  43. Gregory J. 34—Cotton yarn structure part IV—the strength of twisted yarn elements in relation to the properties of the constituent fibres. J Text Inst Trans. 1953;44:T499–514. https://doi.org/10.1080/19447025308662613.

    Article  Google Scholar 

  44. Obukuro M, Takahashi Y, Shimizu H. Effect of diameter of glass fibers on flexural properties of fiber-reinforced composites. Dent Mater J. 2008;27:541–8. https://doi.org/10.4012/dmj.27.541.

    Article  Google Scholar 

  45. Khorami M, Ganjian E. Comparing flexural behaviour of fibre–cement composites reinforced bagasse: wheat and eucalyptus. Constr Build Mater. 2011;25:3661–7. https://doi.org/10.1016/j.conbuildmat.2011.03.052.

    Article  Google Scholar 

  46. Xie X, Zhou Z, Yan Y. Flexural properties and impact behaviour analysis of bamboo cellulosic fibers filled cement based composites. Constr Build Mater. 2019;220:403–14. https://doi.org/10.1016/j.conbuildmat.2019.06.029.

    Article  Google Scholar 

  47. Chakraborty S, Kundu SP, Roy A, et al. Improvement of the mechanical properties of jute fibre reinforced cement mortar: a statistical approach. Constr Build Mater. 2013;38:776–84. https://doi.org/10.1016/j.conbuildmat.2012.09.067.

    Article  Google Scholar 

  48. Cesar PF, Yoshimura HN, Miranda WG, et al. Relationship between fracture toughness and flexural strength in dental porcelains. J Biomed Mater Res Part B Appl Biomater. 2006;78B:265–73. https://doi.org/10.1002/jbm.b.30482.

    Article  CAS  Google Scholar 

  49. Savastano H, Warden P, Coutts RS. Brazilian waste fibres as reinforcement for cement-based composites. Cem Concr Compos. 2000;22:379–84. https://doi.org/10.1016/S0958-9465(00)00034-2.

    Article  CAS  Google Scholar 

  50. Chandramohan D, Presin Kumar AJ. Experimental data on the properties of natural fiber particle reinforced polymer composite material. Data Br. 2017;13:460–8. https://doi.org/10.1016/j.dib.2017.06.020.

    Article  CAS  Google Scholar 

  51. Jawaid M, Abdul Khalil HPS, Abu Bakar A. Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites. Mater Sci Eng A. 2010;527:7944–9. https://doi.org/10.1016/j.msea.2010.09.005.

    Article  CAS  Google Scholar 

  52. Sature P, Mache A. Mechanical characterization and water absorption studies on jute/hemp reinforced hybrid composites. Am J Mater Sci. 2015. https://doi.org/10.5923/c.materials.201502.27.

    Article  Google Scholar 

  53. Dineskumar P, Mukesh B, Parathwaaj K (2020) Mechanical characterization of cissus quadrangularis stem/glass fiber hybrid composites. Int Res J Eng Technol 7

  54. Rafiquzzaman M, Islam MT, Hossain MR, et al. Fabrication and performance test of glass-bamboo fiber based industry safety helmet. Am J Mech Mater Eng. 2017. https://doi.org/10.11648/j.ajmme.20170102.13.

    Article  Google Scholar 

  55. Lu N, Swan RH, Ferguson I. Composition, structure, and mechanical properties of hemp fiber reinforced composite with recycled high-density polyethylene matrix. J Compos Mater. 2012;46:1915–24. https://doi.org/10.1177/0021998311427778.

    Article  CAS  Google Scholar 

  56. Graciani E, Mantič V, París F, Varna J (2016) Fiber–matrix debonding in composite materials. In: Modeling Damage, Fatigue and Failure of Composite Materials. Elsevier, pp 117–141

  57. Johnson AC, Hayes SA, Jones FR. The role of matrix cracks and fibre/matrix debonding on the stress transfer between fibre and matrix in a single fibre fragmentation test. Compos Part A Appl Sci Manuf. 2012;43:65–72. https://doi.org/10.1016/j.compositesa.2011.09.005.

    Article  CAS  Google Scholar 

  58. Mylsamy B, Chinnasamy V, Palaniappan SK, et al. Effect of surface treatment on the tribological properties of Coccinia Indica cellulosic fiber reinforced polymer composites. J Mater Res Technol. 2020;9:16423–34. https://doi.org/10.1016/j.jmrt.2020.11.100.

    Article  CAS  Google Scholar 

  59. Wisnom MR. The role of delamination in failure of fibre-reinforced composites. Philos Trans R Soc A Math Phys Eng Sci. 2012;370:1850–70. https://doi.org/10.1098/rsta.2011.0441.

    Article  CAS  Google Scholar 

  60. Mehdikhani M, Petrov NA, Straumit I, et al. The effect of voids on matrix cracking in composite laminates as revealed by combined computations at the micro- and meso-scales. Compos Part A Appl Sci Manuf. 2019;117:180–92. https://doi.org/10.1016/j.compositesa.2018.11.009.

    Article  CAS  Google Scholar 

  61. Beura S, Thatoi D, Chakraverty A, Mohanty U. Impact of the ambiance on GFRP composites and role of some inherent factors: a review report. J Reinf Plast Compos. 2018;37:533–47. https://doi.org/10.1177/0731684418754359.

    Article  CAS  Google Scholar 

  62. Berglund J, Mikkelsen D, Flanagan BM, et al. Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nat Commun. 2020;11:4692. https://doi.org/10.1038/s41467-020-18390-z.

    Article  CAS  Google Scholar 

  63. Roy A, Chakraborty S, Kundu SP, et al. Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Bioresour Technol. 2012;107:222–8. https://doi.org/10.1016/j.biortech.2011.11.073.

    Article  CAS  Google Scholar 

  64. Sayeed MMA, Paharia A. Optimisation of the surface treatment of jute fibres for natural fibre reinforced polymer composites using Weibull analysis. J Text Inst. 2019;110:1588–95. https://doi.org/10.1080/00405000.2019.1610998.

    Article  CAS  Google Scholar 

  65. Chakma K (2019) Extraction efficiency, quality and characterization of Typha latifolia L. fibres for textile applications. University of Manitoba

Download references

Acknowledgements

The authors like to thank Dr. Mashiur Rahman for the technical guidelines.

Funding

The work was supported by MITACS Canada, Composites Innovation Centre (CIC Engineering, Canada), and the University of Manitoba Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

IS wrote the manuscript, designed the study, fabricated the composites, conducted all the mechanical experiments, and performed the statistical data analysis. MdS and LK participated in the morphological experiments. MdSH helped IS to draft the morphological study.

Corresponding author

Correspondence to Ikra Iftekhar Shuvo.

Ethics declarations

Conflict of Interests

The authors state that there are no conflicts of interest to disclose.

Ethics Approval and Consent to Participate

This research does not contain any studies on human participants or animals performed by the author.

Consent for Publication

I, Ikra Iftekhar Shuvo (IIS), the author, hereby declare that it is my study, and I developed the manuscript titled ‘Flexural strength and load–deflection behaviour of hybrid thermoset composites of wood & canola biopolymers’. The study was conducted at the University of Manitoba and Composites Innovation Centre (CIC Engineering, Canada).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuvo, I.I., Hoque, M.S., Shadhin, M. et al. Flexural Strength and Load–Deflection Behaviour of Hybrid Thermoset Composites of Wood and Canola Biopolymers. Adv. Fiber Mater. 3, 331–346 (2021). https://doi.org/10.1007/s42765-021-00089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00089-5

Keywords

Navigation