当前位置: X-MOL 学术Nat. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interplay of electrochemical and electrical effects induces structural transformations in electrocatalysts
Nature Catalysis ( IF 37.8 ) Pub Date : 2021-06-03 , DOI: 10.1038/s41929-021-00624-y
Feng Li , Xenia V. Medvedeva , Jury J. Medvedev , Evgeniia Khairullina , Helen Engelhardt , Skandan Chandrasekar , Yinzhou Guo , Jian Jin , Anna Lee , Héloïse Thérien-Aubin , Aftab Ahmed , Yuanjie Pang , Anna Klinkova

The precise control of nanostructure and surface atomic arrangement can be used to tune the electrocatalytic properties of materials and improve their performance. Unfortunately, the long-term structural stability of electrocatalysts with complex nanoscale morphology, a necessary requirement for industrial implementation, often remains elusive. Here we study how electrochemical and complex current behaviours affect the nanoscale object and its structural stability during electrocatalysis. We find that metal electromigration can drive structural transformation during electrolysis to minimize current crowding in nanoscale geometric constrictions. This electrical phenomenon, acting in combination with electrochemically induced atomic migration, can result in specific structural transformations of the catalyst, with the extent and rate depending on the material, geometry and reaction. Using a series of nanostructure examples, we establish a general framework for evaluating the structural transformations in cathodic metal nanocatalysts and explain specific qualitative trends. In conjunction with catalyst design rules, this mechanistic framework will facilitate the development of nanostructured electrocatalysts with sufficient stability for sustainable applications.



中文翻译:

电化学和电学效应的相互作用导致电催化剂的结构转变

纳米结构和表面原子排列的精确控制可用于调整材料的电催化性能并提高其性能。不幸的是,具有复杂纳米级形态的电催化剂的长期结构稳定性是工业实施的必要条件,但通常仍然难以捉摸。在这里,我们研究电化学和复杂电流行为如何影响纳米级物体及其在电催化过程中的结构稳定性。我们发现金属电迁移可以驱动电解过程中的结构转变,以最大限度地减少纳米级几何收缩中的电流拥挤。这种电现象与电化学诱导的原子迁移相结合,可以导致催化剂的特定结构转变,程度和速率取决于材料、几何形状和反应。使用一系列纳米结构示例,我们建立了评估阴极金属纳米催化剂结构转变的一般框架,并解释了具体的定性趋势。结合催化剂设计规则,这种机械框架将促进纳米结构电催化剂的开发,该催化剂具有足够的稳定性,可用于可持续应用。

更新日期:2021-06-03
down
wechat
bug