当前位置: X-MOL 学术Eur. Phys. J. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of pressure on the structural, mechanical, anisotropic, and electronic properties of $$\hbox {MgTi}_{2}\hbox {O}_{4}$$ MgTi 2 O 4 via density functional theory
The European Physical Journal B ( IF 1.6 ) Pub Date : 2021-05-27 , DOI: 10.1140/epjb/s10051-021-00119-6
Rukaia Khatun , Md. Atikur Rahman , Md. Zahid Hasan , Khandaker Monower Hossain

Abstract

The variation of structural, mechanical, anisotropy, and electronic properties of \(\hbox {MgTi}_{{2}}\hbox {O}_{{4}}\) with pressure up to 40 GPa have been studied by employing DFT based ab-initio technique for the first time. The slight variation between the optimized and experimental lattice constant ensures the accuracy of the present work, and slightly decreased with pressure. The investigated zero pressure elastic constants and their linear response to pressure up to 40 GPa confirms the stability of cubic phase as the Born stability criteria are satisfied. A transition from cubic to tetragonal phase of \(\hbox {MgTi}_{{2}}\hbox {O}_{{4}}\) is observed at 50 GPa pressure. The ductile nature of \(\hbox {MgTi}_{{2}}\hbox {O}_{{4}}\) is exhibited in this study, which is enhanced with increasing pressure effect. The anisotropy factors are increased sharply with pressure indicating the changes of physical properties of \(\hbox {MgTi}_{{2}}\hbox {O}_{{4}}\) in different directions under pressure. The band structure and density of states reveal the metallic nature of \(\hbox {MgTi}_{{2}}\hbox {O}_{{4}}\), which can be slightly tuned under pressure. Therefore, our simulation results clearly elucidate the significance of taking into account the pressure effects on the physical properties of \(\hbox {MgTi}_{{2}}\hbox {O}_{{4}}\).

Graphical abstract



中文翻译:

压力通过密度泛函理论对$$ \ hbox {MgTi} _ {2} \ hbox {O} _ {4} $$ MgTi 2 O 4的结构,力学,各向异性和电子性能的影响

摘要

通过使用来研究压力高达40 GPa时\(\ hbox {MgTi} _ {{2}} \ hbox {O} _ {{4}} \)的结构,力学,各向异性和电子性质的变化。首次基于DFT的从头开始技术。优化的晶格常数和实验晶格常数之间的细微变化确保了当前工作的准确性,并且随着压力而略有减小。研究的零压力弹性常数及其对高达40 GPa的压力的线性响应证实了立方相的稳定性,因为它满足了Born稳定性标准。在50 GPa压力下观察到\(\ hbox {MgTi} _ {{2}} \ hbox {O} _ {{4}} \)的立方相到四方相的跃迁。\(\ hbox {MgTi} _ {{2}} \ hbox {O} _ {{4}} \)的延性在这项研究中显示出来,随着压力作用的增加而增强。各向异性系数随压力急剧增加,表明\(\ hbox {MgTi} _ {{2}} \ hbox {O} _ {{4}} \)的物理性质在压力下向不同方向变化。能带结构和状态密度揭示了\(\ hbox {MgTi} _ {{2}} \ hbox {O} _ {{4}} \}的金属性质,可以在压力下对其进行微调。因此,我们的仿真结果清楚地说明了考虑压力对\(\ hbox {MgTi} _ {{2}} \ hbox {O} _ {{4}} \}的物理属性的重要性

图形概要

更新日期:2021-05-27
down
wechat
bug