Skip to main content

Advertisement

Log in

Effects of pressure on the structural, mechanical, anisotropic, and electronic properties of \(\hbox {MgTi}_{2}\hbox {O}_{4}\) via density functional theory

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The variation of structural, mechanical, anisotropy, and electronic properties of \(\hbox {MgTi}_{{2}}\hbox {O}_{{4}}\) with pressure up to 40 GPa have been studied by employing DFT based ab-initio    technique for the first time. The slight variation between the optimized and experimental lattice constant ensures the accuracy of the present work, and slightly decreased with pressure. The investigated zero pressure elastic constants and their linear response to pressure up to 40 GPa confirms the stability of cubic phase as the Born stability criteria are satisfied. A transition from cubic to tetragonal phase of \(\hbox {MgTi}_{{2}}\hbox {O}_{{4}}\) is observed at 50 GPa pressure. The ductile nature of \(\hbox {MgTi}_{{2}}\hbox {O}_{{4}}\) is exhibited in this study, which is enhanced with increasing pressure effect. The anisotropy factors are increased sharply with pressure indicating the changes of physical properties of \(\hbox {MgTi}_{{2}}\hbox {O}_{{4}}\) in different directions under pressure. The band structure and density of states reveal the metallic nature of \(\hbox {MgTi}_{{2}}\hbox {O}_{{4}}\), which can be slightly tuned under pressure. Therefore, our simulation results clearly elucidate the significance of taking into account the pressure effects on the physical properties of \(\hbox {MgTi}_{{2}}\hbox {O}_{{4}}\).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors’ comment: All data needed to evaluate the conclusion of this study are presented in the paper. Additional data are available from the corresponding author upon reasonable request].

References

  1. C. Baudin, R. Martínez, P. Pena, J. Am. Ceram. Soc. 78(7), 1995 (1995)

    Article  Google Scholar 

  2. Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.S. Hu, L. Hong, Nat. Commun. 4(1), 1 (2013)

    Google Scholar 

  3. Y. Sun, Y. Zou, F. Yuan, C. Yan, S. Chen, Y.A. Jia, H. Zhang, D. Yang, X. She, Appl. Surf. Sci. 467, 640 (2019)

    Article  ADS  Google Scholar 

  4. T. Zhao, R. Ji, H. Yang, Y. Zhang, X. Sun, Y. Li, L. Li, R. Chen, J. Energy Chem. 33, 37 (2019)

    Article  Google Scholar 

  5. Jin Chao, F. Lu, X. Cao, Z. Yang, R. Yang, J. Mater. Chem. A 1(39), 12170 (2013)

    Article  Google Scholar 

  6. Y. Mouhib, M. Belaiche, S. Briche, C.A. Ferdi, E. Iffer, Mater. Res. Express 6(3), 035508 (2018)

    Article  ADS  Google Scholar 

  7. K.T. Jacob, S. Sivakumar, J. Alloys Compd. 775, 1357 (2019)

    Article  Google Scholar 

  8. L. Chun, X. Han, F. Cheng, Y. Hu, C. Chen, J. Chen, Nat. Commun. 6, 7345 (2015)

    Article  ADS  Google Scholar 

  9. D. Laurence, Mater. World 4(3), 127 (1996)

    Google Scholar 

  10. C. Shi, J. Mag, Alloys 1(1), 1 (2013)

    Article  Google Scholar 

  11. K.U. Kainer, Magnesium Alloys and Technology (Wiley, New York, 2003)

    Book  Google Scholar 

  12. H. Ono, K. Nakajima, S. Agawa, T. Ibuta, R. Maruo, T. Usui, Steel Res. Int. 86(3), 241 (2015)

    Article  Google Scholar 

  13. S.H. Lee, H. Takagi, D. Louca, M. Matsuda, S. Ji, H. Ueda, Y. Ueda, J. Phys. Soc. Jpn. 79(1), 011004 (2010)

    Article  ADS  Google Scholar 

  14. V.V. Ivanov, V.M. Talanov, V.B. Shirokov, M.V. Talanov, Inorg. Mater. 47(9), 990–998 (2011)

    Article  Google Scholar 

  15. M. Isobe, Y. Ueda, J. Phys. Soc. Jpn. 71, 1848 (2002)

    Article  ADS  Google Scholar 

  16. H. Fujiwara, Y. Ishige, T. Mizokawa, T. Sasaki, M. Isobe, Y. Ueda, APL Mater. 1(2), 022110 (2013)

    Article  ADS  Google Scholar 

  17. D.M. Flot, J.T.S. Irvine, Solid State Ion. 135, 513–518 (2000)

    Article  Google Scholar 

  18. S. Akbudak, A.K. Kushwaha, J. Supercond. Nov. Magn. 31, 1421 (2018)

    Article  Google Scholar 

  19. Z.V. Popovic, G.D. Marzi, M.J. Konstantinovic, A. Cantarero, Z.D. Mitrovic, M. Isobe, Y. Ueda, Phys. Rev. B 68, 224302 (2003)

    Article  ADS  Google Scholar 

  20. M.Z. Hasan, M. Rasheduzzaman, K.M. Hossain, Chin. Phys. B 29, 123101 (2020)

    Article  ADS  Google Scholar 

  21. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Matter 14(1), 2717 (2002)

    Article  ADS  Google Scholar 

  22. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, ZeitschriftfürKristallographie-Crystalline Mater 220(5), 567 (2005)

    Article  ADS  Google Scholar 

  23. K.M. Hossain, Z. Hasan, Mater. Today Commun. 26, 101908 (2021)

    Article  Google Scholar 

  24. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  25. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, A.L. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  26. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13(2), 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  27. B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, J. Comp. Phys. 131(1), 233 (1997)

    Article  ADS  Google Scholar 

  28. C.Z. Fan, S.Y. Zeng, L.X. Li, Z.J. Zhan, R.P. Liu, W.K. Wang, P. Zhang, Y.G. Yao, Phys. Rev. B 74(2), 125118 (2006)

    Article  ADS  Google Scholar 

  29. R. Gaillac, P. Pullumbi, F.X. Coudert, J. Phys. Condens. Matter 28, 27520 (2016)

    Article  Google Scholar 

  30. D.M. Flot, J.T.S. Irvine, Solid State Ion. 135, 513 (2000)

    Article  Google Scholar 

  31. J. Wang, Y. Zhou, Phys. Rev. B 69(21), 214111 (2004)

    Article  ADS  Google Scholar 

  32. J.F. Nye, Propriétés Physiques des Matériaux (Dunod, Paris, 1961)

    Google Scholar 

  33. M. Born, Math. Proc. Camb. Philos. Soc. 36(2), 160 (1940)

    Article  ADS  Google Scholar 

  34. Y. Liu, W.C. Hu, D.J. Li, X.Q. Zeng, C.S. Xu, X.J. Yang, Intermetallics 31, 257 (2012)

    Article  Google Scholar 

  35. D.G. Pettifor, Mater. Sci. Technol. 8(4), 345 (1992)

    Article  Google Scholar 

  36. K.M. Hossain, M.Z. Hasan, M.L. Ali, AIP Adv. 11, 015052 (2021)

    Article  ADS  Google Scholar 

  37. R. Hill, Proc. Phys. Soc. Sect. A 65(5), 349 (1952)

    Article  ADS  Google Scholar 

  38. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, J. Phys. Rev. B 76(5), 054115 (2007)

    Article  ADS  Google Scholar 

  39. S.F. Pugh, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45(367), 823 (1954)

  40. K.M. Hossain, M.Z. Hasan, M.L. Ali, Results Phys. 19, 103337 (2020)

    Article  Google Scholar 

  41. M.I. Naher, S.H. Naqib, J. Alloys Compd. 829, 54509 (2020)

    Article  Google Scholar 

  42. Z. Sun, D. Music, R. Ahuja, J.M. Schneider, Phys. Rev. B 71, 193402 (2005)

    Article  ADS  Google Scholar 

  43. M. Rasheduzzaman, K.M. Hossain, S.K. Mitro, M.A. Hadi, J.K. Modak, M.Z. Hasan, Phys. Lett. A 385, 126967 (2021)

    Article  Google Scholar 

  44. M.Z. Hasan, K.M. Hossain, S.K. Mitro, M. Rasheduzzaman, J.K. Modak, M.A. Rayhan, Appl. Phys. A 127, 36 (2021)

    Article  ADS  Google Scholar 

  45. M.H.K. Rubel, K.M. Hossain, S.K. Mitro, M.M. Rahaman, M.A. Hadi, A.K.M.A. Islam, Mater. Today Commun. 241, 00935 (2020)

    Google Scholar 

  46. S.K. Mitro, K.M. Hossain, R. Majumder, M.Z. Hasan, J. Alloy Compd. 854, 157088 (2021)

    Article  Google Scholar 

  47. D.H. Chung, W.R. Buessem, J. Appl. Phys. 38, 2010 (1967)

    Article  ADS  Google Scholar 

  48. P. Saeidi, M.H.S. Kaviyani, S. Yalameha, Comp. Condens. Matter 16, e00358 (2018)

    Google Scholar 

  49. X.P. Gao, Y.H. Jiang, R. Zhou, J. Feng, J. Alloys Compd. 587, 819 (2014)

    Article  Google Scholar 

  50. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Appl. Phys. 84, 4891 (1998)

    Article  ADS  Google Scholar 

  51. A. Gueddouh, B. Bentria, I. Lefkaier, J. Magn. Magn. Mater. 406, 192 (2016)

    Article  ADS  Google Scholar 

  52. C.M. Kube, AIP Adv. 6, 095209 (2016)

    Article  ADS  Google Scholar 

  53. Y.H. Duan, Y. Sun, M.J. Peng, S.G. Zhou, J. Alloys Compd. 595, 14 (2014)

    Article  Google Scholar 

  54. W.C. Hu, Y. Liu, D.J. Li, X.Q. Zeng, C.S. Xu, Comp. Mater. Sci. 83, 27 (2014)

    Article  Google Scholar 

  55. P. Mao, B. Yu, Z. Liu, F. Wang, Y. Ju, Comp. Mater. Sci. 88, 61 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Pabna University Science and Technology (PUST), Bangladesh for partly financial support during this research work.

Author information

Authors and Affiliations

Authors

Contributions

RK: investigation, methodology, data curation, and writing original draft; MAR: formal analysis, conceptualization, and review-editing; MZH: formal analysis, validation, and review-editing; KMH: conceptualization, supervision, formal analysis, and review-editing.

Corresponding authors

Correspondence to Md. Atikur Rahman or Khandaker Monower Hossain.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatun, R., Rahman, M.A., Hasan, M.Z. et al. Effects of pressure on the structural, mechanical, anisotropic, and electronic properties of \(\hbox {MgTi}_{2}\hbox {O}_{4}\) via density functional theory. Eur. Phys. J. B 94, 113 (2021). https://doi.org/10.1140/epjb/s10051-021-00119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00119-6

Navigation