当前位置: X-MOL 学术Electronics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Advanced Angular Velocity Error Prediction Horizon Self-Tuning Nonlinear Model Predictive Speed Control Strategy for PMSM System
Electronics ( IF 2.6 ) Pub Date : 2021-05-10 , DOI: 10.3390/electronics10091123
Yao Wei , Yanjun Wei , Yening Sun , Hanhong Qi , Mengyuan Li

In nonlinear model predictive control (NMPC), higher accuracy can be obtained with a shorter prediction horizon in steady-state, better dynamics can be obtained with a longer prediction horizon in a transient state, and calculation burden is proportional to the prediction horizon which is usually pre-selected as a constant according to dynamics of the system with NMPC. The minimum calculation and prediction accuracy are hard to ensure for all operating states. This can be improved by an online changing prediction horizon. A nonlinear model predictive speed control (NMPSC) with advanced angular velocity error (AAVE) prediction horizon self-tuning method has been proposed in which the prediction horizon is improved as a discrete-time integer variable and can be adjusted during each sampling period. A permanent magnet synchronous motor (PMSM) rotor position control system with the proposed strategy is accomplished. Tracking performances including rotor position Integral of Time-weighted Absolute value of the Error (ITAE), the maximal delay time, and static error are improved about 15.033%, 23.077%, and 10.294% respectively comparing with the conventional NMPSC strategy with a certain prediction horizon. Better disturbance resisting performance, lower weighting factor sensitivities, and higher servo stiffness are achieved. Simulation and experimental results are given to demonstrate the effectiveness and correctness.

中文翻译:

PMSM系统的高级角速度误差预测水平自校正非线性模型预测速度控制策略

在非线性模型预测控制(NMPC)中,在稳态下使用较短的预测范围可以获得更高的精度,在瞬态下使用较长的预测范围可以获得更好的动态,并且计算负担与预测范围成正比。通常根据带有NMPC的系统的动力学预先选择为常数。很难确保所有操作状态的最低计算和预测精度。可以通过在线更改预测范围来改善这一点。提出了一种具有高级角速度误差(AAVE)预测范围自整定方法的非线性模型预测速度控制(NMPSC),其中将预测范围作为离散时间整数变量进行了改进,并且可以在每个采样周期内进行调整。利用所提出的策略,实现了永磁同步电动机(PMSM)转子位置控制系统。与常规NMPSC策略相比,包括转子位置误差的时间加权绝对值(ITAE)的积分,最大延迟时间和静态误差的跟踪性能分别比常规NMPSC策略分别提高了约15.033%,23.077%和10.294%。地平线。获得了更好的抗干扰性能,更低的加权因子灵敏度和更高的伺服刚度。仿真和实验结果证明了该方法的有效性和正确性。与具有一定预测范围的常规NMPSC策略相比,静态误差和静态误差分别提高了约15.033%,23.077%和10.294%。获得了更好的抗干扰性能,更低的加权因子灵敏度和更高的伺服刚度。仿真和实验结果证明了该方法的有效性和正确性。与具有一定预测范围的常规NMPSC策略相比,静态误差和静态误差分别提高了约15.033%,23.077%和10.294%。获得了更好的抗干扰性能,更低的加权因子灵敏度和更高的伺服刚度。仿真和实验结果证明了该方法的有效性和正确性。
更新日期:2021-05-10
down
wechat
bug