当前位置: X-MOL 学术J. Comput. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Doping engineering to enhance the performance of double-gate p MOSFETs with ultrashort gate length (5 nm)
Journal of Computational Electronics ( IF 2.2 ) Pub Date : 2021-05-06 , DOI: 10.1007/s10825-021-01693-9
Afshan Khaliq , Shuo Zhang

Enhancing the performance of Si field-effect transistors with ultrashort gate length is very challenging because of the increase of the source-to-drain tunneling and other short-channel effects. Doping engineering can affect the tunneling probability by varying the energy band profile and electric field. Full quantum ballistic simulations are performed here to study the use of doping engineering as a tool to improve the electrostatic integrity in a pMOSFETs device with a double-gate structure and a gate length of 5 nm. The simulation methodology is based on nonequilibrium Green’s functions, employing a six-band k·p Hamiltonian. The influence of the source/drain doping profile/concentration on the electric field in both the transport and confinement directions is also discussed. The trends found for the ON- to OFF-state current ratio and the switching delay differ, depending on the doping profile/concentration for high-performance and low-operating-power applications. The results of this study highlight the importance of using a Gaussian doping profile, as compared with constant doping, to improve the performance of such ultrascaled devices in terms of enhancing the subthreshold swing, reducing the drain-induced barrier lowering, and achieving low source-to-drain tunneling. The doping concentration can be optimized by controlling the source-to-drain tunneling and overcoming the source exhaustion. The selection of a certain damping factor in the Gaussian function can be used as a parameter, in addition to the peak doping concentration, to optimize the device performance.



中文翻译:

掺杂技术可增强具有超短栅极长度(5 nm)的双栅极p MOSFET的性能

由于源-漏隧穿和其他短沟道效应的增加,以极短的栅极长度来增强Si场效应晶体管的性能非常具有挑战性。掺杂工程可以通过改变能带分布和电场来影响隧穿概率。在此执行全量子弹道仿真,以研究使用掺杂工程作为工具来改善具有双栅极结构和栅极长度为5 nm的p MOSFET器件中的静电完整性。该仿真方法基于非平衡格林函数,采用六频带k · p哈密​​尔顿 还讨论了源极/漏极掺杂分布/浓度在传输方向和限制方向上对电场的影响。导通/截止状态电流比和开关延迟的趋势有所不同,具体取决于高性能和低工作功率应用的掺杂曲线/浓度。这项研究的结果突显出,与恒定掺杂相比,使用高斯掺杂分布图改善此类超大规模器件的性能至关重要,因为它可以增强亚阈值摆幅,减少漏极引起的势垒降低以及实现低源极掺杂。排水隧道。可以通过控制源极到漏极的隧穿并克服源极耗尽来优化掺杂浓度。

更新日期:2021-05-06
down
wechat
bug