当前位置: X-MOL 学术Commun. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Supramolecular cocrystals built through redox-triggered ion intercalation in π -conjugated polymers
Communications Materials ( IF 7.5 ) Pub Date : 2021-04-21 , DOI: 10.1038/s43246-021-00148-9
Yu Yamashita , Junto Tsurumi , Tadanori Kurosawa , Kan Ueji , Yukina Tsuneda , Shinya Kohno , Hideto Kempe , Shohei Kumagai , Toshihiro Okamoto , Jun Takeya , Shun Watanabe

Self-organization in π-conjugated polymers gives rise to a highly ordered lamellar structure, in which inter-chain stacking spontaneously forms two-dimensional conjugated sheets. This multi-layer stacked nature of semicrystalline polymers allows the inclusion of various functional molecules. In particular, redox-triggered ion-intercalation is an ideal system for molecular doping, for which extremely high charge carrier density has been achieved. Here, we conducted a detailed structural analysis and electron density simulation to pinpoint exactly where the guest dopants are located periodically in the void space in a polymer’s lamellae. Our findings are indicative of an intercalation compound of layered polymers and a guest intercalant. We show that a homogeneous cocrystal structure can be realized throughout the host polymer medium, which is proved by the observation of coherent carrier transport. The intercalation cocrystal nature gives the best achievable doping level in semicrystalline polymers and excellent environmental stability. These findings should open up possibilities for tuning the collective dynamics of functional molecules through intercalation phenomena.



中文翻译:

通过在π共轭聚合物中的氧化还原触发离子嵌入而构建的超分子共晶体

π中的自组织共轭聚合物产生高度有序的层状结构,其中链间堆积自发形成二维共轭片。半结晶聚合物的这种多层堆叠性质允许包含各种功能分子。特别地,氧化还原触发的离子嵌入是用于分子掺杂的理想系统,为此已经实现了极高的电荷载流子密度。在这里,我们进行了详细的结构分析和电子密度模拟,以准确查明客体掺杂剂在聚合物薄片中的空隙空间中的周期性位置。我们的发现表明层状聚合物和客体插层剂的插层化合物。我们表明,可以在整个主体聚合物介质中实现均匀的共晶结构,观察相干载流子运输可以证明这一点。插层共晶性质为半结晶聚合物提供了最佳的掺杂水平,并具有出色的环境稳定性。这些发现应为通过插层现象调节功能分子的集体动力学开辟可能性。

更新日期:2021-04-21
down
wechat
bug