当前位置: X-MOL 学术Acta Math. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sharp Bounds for Toader-Type Means in Terms of Two-Parameter Means
Acta Mathematica Scientia ( IF 1.2 ) Pub Date : 2021-04-19 , DOI: 10.1007/s10473-021-0306-y
Yueying Yang , Weimao Qian , Hongwei Zhang , Yuming Chu

In the article, we prove that the double inequalities

$$\begin{array}{*{20}{c}} {{G^p}\left[ {{\lambda _1}a + \left( {1 - {\lambda _1}} \right)b,{\lambda _1}b + \left( {1 - {\lambda _1}} \right)a} \right]{A^{1 - p}}\left( {a,b} \right) < T\left[ {A\left( {a,b} \right),G\left( {a,b} \right)} \right]} \\ { < {G^p}\left[ {\mu _1^{}a + \left( {1 - {\mu _1}} \right)a} \right]{A^{1 - p}}\left( {a,b} \right),\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \\ {{C^s}\left[ {{\lambda _2}a + \left( {1 - {\lambda _2}} \right)b,{\lambda _2}b + \left( {1 - {\lambda _2}} \right)a} \right]{A^{1 - s}}\left( {a,b} \right) < T\left[ {A\left( {a,b} \right),Q\left( {a,b} \right)} \right]} \\ { < {C^s}\left[ {{\mu _2}a + \left( {1 - {\mu _2}} \right)b,{\mu _2}b + {{\left( {1 - {\mu _2}} \right)}_a}} \right]{A^{1 - p}}\left( {a,b} \right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \end{array}$$

hold for all a, b > 0 with a ≠ b if and only if \({\lambda _1} \le 1/2 - \sqrt {1 - {{\left({2/\pi} \right)}^{2/p}}} /2\), \({\mu _1} \ge 1/2 - \sqrt {2p} /\left({4p} \right),{\lambda _2} \le 1/2 + \sqrt {{2^{3/\left({2s} \right)}}{{\left({\varepsilon \left({\sqrt 2 /2} \right)/\pi} \right)}^{1/s}} - 1} /2\) and \({\mu _2} \ge 1/2 + \sqrt s /\left({4s} \right)\) if λ1, μ1 ∈ (0, 1/2), λ2, μ2 ∈ (1/2, 1), p ≥ 1 and s ≥ 1/2, where \(G\left({a,b} \right) = \sqrt {ab} \), A(a, b) = (a + b)/2, \(T\left({a,b} \right) = 2\int_0^{\pi /2} {\sqrt {{a^2}{{\cos}^2}t + {b^2}{{\sin}^2}t} dt/\pi} \), \(Q\left({a,b} \right) = \sqrt {\left({{a^2} + {b^2}} \right)/2} \), C(a, b) = (a2 + b2)/(a + b) and \(\varepsilon (r) = \int_0^{\pi /2} {\sqrt {1 - {r^2}{{\sin}^2}t}} {\rm{d}}t\).



中文翻译:

用两参数均值表示Toader型均值的尖锐界线

在本文中,我们证明了双重不等式

$$ \ begin {array} {* {20} {c}} {{G ^ p} \ left [{{\ lambda _1} a + \ left({1-{\ lambda _1}} \ right)b, {\ lambda _1} b + \ left({1-{\ lambda _1}} \ right)a} \ right] {A ^ {1-p}} \ left({a,b} \ right)<T \左[{A \ left({a,b} \ right),G \ left({a,b} \ right)} \ right]} \\ {<{G ^ p} \ left [{\ mu _1 ^ {} a + \ left({1-{\ mu _1}} \ right)a} \ right] {A ^ {1-p}} \ left({a,b} \ right),\; \; \ ; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \ ; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;}} \\ {{ C ^ s} \ left [{{\ lambda _2} a + \ left({1-{\ lambda _2}} \ right)b,{\ lambda _2} b + \ left({1-{\ lambda _2} } \ right)a} \ right] {A ^ {1-s}} \ left({a,b} \ right)<T \ left [{A \ left({a,b} \ right),Q \ left({a,b} \ right)} \ right]} \\ {<{C ^ s} \ left [{{\ mu _2} a + \ left({1-{\ mu _2}} \ right) b,{\ mu _2} b + {{\ left({1-{\ mu _2}} \ right)} _ a}} \ right] {A ^ {1-p}} \ left({a,b} \正确的)\;\;\;\;\;\;\;\;\;\;\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;} \ end {array} $$

对于且仅当\({\ lambda _1} \ le 1/2-\ sqrt {1-{{\ left({2 / \ pi} \ right)} ^时,所有a,b > 0且bb成立{2 / p}}} / 2 \)\({\ mu _1} \ ge 1 /2-\ sqrt {2p} / \ left({4p} \ right),{\ lambda _2} \ le 1 / 2 + \ sqrt {{2 ^ {3 / \ left({2s} \ right)}} {{\ left({\ varepsilon \ left({\ sqrt 2/2} \ right)/ \ pi} \ right) } ^ {1 / S}} - 1} / 2 \)\({\亩_2} \ GE 1/2 + \ SQRT S / \左({4S} \右)\)如果λ 1μ 1 ∈(0,1/2),λ 2μ 2 ∈(1/2,1),p≥ 1和s ^≥ 1/2,其中\(G \左({A,b} \右)= \ sqrt {ab} \)Aa,b)=(a + b)/ 2,\(T \ left({a,b} \ right)= 2 \ int_0 ^ {\ pi / 2} {\ sqrt {{a ^ 2} { {\ cos} ^ 2} t + {b ^ 2} {{\ sin} ^ 2} t} dt / \ pi} \)\(Q \ left({a,b} \ right)= \ sqrt { \ left({{a ^ 2} + {b ^ 2}} \ right)/ 2} \)Ca,b)=(a 2 + b 2)/(a + b)和\(\ varepsilon (r)= \ int_0 ^ {\ pi / 2} {\ sqrt {1-{r ^ 2} {{\ sin} ^ 2} t}} {\ rm {d}} t \)

更新日期:2021-04-19
down
wechat
bug