Skip to main content
Log in

Sharp Bounds for Toader-Type Means in Terms of Two-Parameter Means

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In the article, we prove that the double inequalities

$$\begin{array}{*{20}{c}} {{G^p}\left[ {{\lambda _1}a + \left( {1 - {\lambda _1}} \right)b,{\lambda _1}b + \left( {1 - {\lambda _1}} \right)a} \right]{A^{1 - p}}\left( {a,b} \right) < T\left[ {A\left( {a,b} \right),G\left( {a,b} \right)} \right]} \\ { < {G^p}\left[ {\mu _1^{}a + \left( {1 - {\mu _1}} \right)a} \right]{A^{1 - p}}\left( {a,b} \right),\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \\ {{C^s}\left[ {{\lambda _2}a + \left( {1 - {\lambda _2}} \right)b,{\lambda _2}b + \left( {1 - {\lambda _2}} \right)a} \right]{A^{1 - s}}\left( {a,b} \right) < T\left[ {A\left( {a,b} \right),Q\left( {a,b} \right)} \right]} \\ { < {C^s}\left[ {{\mu _2}a + \left( {1 - {\mu _2}} \right)b,{\mu _2}b + {{\left( {1 - {\mu _2}} \right)}_a}} \right]{A^{1 - p}}\left( {a,b} \right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \end{array}$$

hold for all a, b > 0 with a ≠ b if and only if \({\lambda _1} \le 1/2 - \sqrt {1 - {{\left({2/\pi} \right)}^{2/p}}} /2\), \({\mu _1} \ge 1/2 - \sqrt {2p} /\left({4p} \right),{\lambda _2} \le 1/2 + \sqrt {{2^{3/\left({2s} \right)}}{{\left({\varepsilon \left({\sqrt 2 /2} \right)/\pi} \right)}^{1/s}} - 1} /2\) and \({\mu _2} \ge 1/2 + \sqrt s /\left({4s} \right)\) if λ1, μ1 ∈ (0, 1/2), λ2, μ2 ∈ (1/2, 1), p ≥ 1 and s ≥ 1/2, where \(G\left({a,b} \right) = \sqrt {ab} \), A(a, b) = (a + b)/2, \(T\left({a,b} \right) = 2\int_0^{\pi /2} {\sqrt {{a^2}{{\cos}^2}t + {b^2}{{\sin}^2}t} dt/\pi} \), \(Q\left({a,b} \right) = \sqrt {\left({{a^2} + {b^2}} \right)/2} \), C(a, b) = (a2 + b2)/(a + b) and \(\varepsilon (r) = \int_0^{\pi /2} {\sqrt {1 - {r^2}{{\sin}^2}t}} {\rm{d}}t\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toader G. Some mean values related to the arithmetic-geometric mean. J Math Anal Appl, 1998, 218(2): 358–368

    Google Scholar 

  2. Wang M K, Zhang W, Chu Y M. Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Math Sci, 2019, 39B(5): 1440–1450

    Google Scholar 

  3. Wang M K, Chu Y M. Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Mathematica Scientia, 2017, 37B(3): 607–622

    Google Scholar 

  4. Neuman E. On the calculation of elliptic integrals of the second and third kinds. Zastos Mat, 1969/1970, 11: 91–94

    Google Scholar 

  5. Neuman E. Elliptic integrals of the second and third kinds. Zastos Mat, 1969/1970, 11: 99–102

    Google Scholar 

  6. Byrd P F, Friedman M D. Handbook of Elliptic Integrals for Engineers and Scientists. New York: Springer-Verlag, 1971

    Google Scholar 

  7. Prasolov V, Solovyev Y. Elliptic Functions and Elliptic Integrals. Providence: American Mathematical Society, 1997

    Google Scholar 

  8. Neuman E. Bounds for symmetric elliptic integrals. J Approx Theory, 2003, 122(2): 249–259

    Google Scholar 

  9. Kazi H, Neuman E. Inequalities and bounds for elliptic integrals II//Special Functions and Orthogonal Polynomials. Contemp Math, 471: 127–138. Providence: Amer Math Soc, 2008

    Google Scholar 

  10. Chu Y M, Wang M K, Qiu S L, Jiang Y P. Bounds for complete elliptic integrals of the second kind with applications. Comput Math Appl, 2012, 63(7): 1177–1184

    Google Scholar 

  11. Yang Z H, Qian W M, Chu Y M, Zhang W. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J Math Anal Appl, 2018, 462(2): 1714–1726

    Google Scholar 

  12. Zhao T H, Wang M K, Zhang W, Chu Y M. Quadratic transformation inequalities for Gaussian hypergeometric function. J Inequal Appl, 2018, 2018: Article 251

  13. Yang Z H, Qian W M, Chu Y M. Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math Inequal Appl, 2018, 21(4): 1185–1199

    Google Scholar 

  14. Wang M K, Chu Y M, Zhang W. Monotonicity and inequalities involving zero-balanced hypergeometric functions. Math Inequal Appl, 2019, 22(2): 601–617

    Google Scholar 

  15. Qiu S L, Ma X Y, Chu Y M. Sharp Landen transformation inequalities for hypergeometric functions, with applications. J Math Anal Appl, 2019, 474(2): 1306–1337

    Google Scholar 

  16. Yang Z H, Qian W M, Zhang W, Chu Y M. Notes on the complete elliptic integral of the first kind. Math Inequal Appl, 2020, 23(1): 77–93

    Google Scholar 

  17. Wang M K, He Z Y, Chu Y M. Sharp power mean inequalities for the generalized elliptic integral of the first kind. Comput Methods Funct Theory, 2020, 20(1): 111–124

    Google Scholar 

  18. Qian W M, He Z Y, Chu Y M. Approximation for the complete elliptic integral of the first kind. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM, 2020, 114(2), Article 57. https://doi.org/10.1007/s13398-020-00784-9

  19. Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps. New York: John Wiley & Sons, 1997

    Google Scholar 

  20. Wang M K, Hong M Y, Xu Y F, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J Math Inequal, 2020, 14(1): 1–21

    Google Scholar 

  21. Huang T R, Tan S Y, Ma X Y, Chu Y M. Monotonicity properties and bounds for the complete p-elliptic integrals. J Inequal Appl, 2018, 2018: Article 239

  22. Vuorinen M. Hypergeometric functions in geometric function theory//Special Functions and Differential Equations. Madras, 1997: 119–126; New Delhi: Allied Publ, 1998

    Google Scholar 

  23. Barnard R W, Pearce K, Richards K C. A monotonicity property involving 3F2 and comparisons of the classical approximations of elliptical arc length. SIAM J Math Anal, 2000, 32(2): 403–419

    Google Scholar 

  24. Alzer H, Qiu S L. Monotonicity theorems and inequalities for the complete elliptic integrals. J Comput Appl Math, 2004, 172(2): 289–312

    Google Scholar 

  25. Kazi H, Neuman E. Inequalities and bounds for elliptic integrals. J Approx Theory, 2007, 146(2): 212–226

    Google Scholar 

  26. Atkinson K E. An Introduction to Numerical Analysis. New York: John Wiley & Songs, 1989

    Google Scholar 

  27. Chu Y M, Wang M K, Qiu S L, Qiu Y F. Sharp generalized Seiffert mean bounds for Toader mean. Abstr Appl Anal, 2011, 2011: Article ID 605259

  28. Chu Y M, Wang M K, Qiu S L. Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc Indian Acad Sci Math Sci, 2012, 122(1): 41–51

    Google Scholar 

  29. Chu Y M, Wang M K. Optimal Lehmer mean bounds for the Toader mean. Results Math, 2012, 61(3/4): 223–229

    Google Scholar 

  30. Wang M K, Chu Y M, Qiu S L, Jiang Y P. Bounds for the perimeter of an ellipse. J Approx Theory, 2012, 164(7): 928–937

    Google Scholar 

  31. Wang M K, Chu Y M. Asymptotical bounds for complete elliptic integrals of the second kind. J Math Anal Appl, 2013, 402(1): 119–126

    Google Scholar 

  32. Chu Y M, Wang M K, Ma X Y. Sharp bounds for Toader mean in terms of contraharmonic mean with applications. J Math Inequal Appl, 2013, 7(2): 161–166

    Google Scholar 

  33. Li J F, Qian W M, Chu Y M. Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means. J Inequal Appl, 2015, 2015: Article 277

  34. Chu H H, Qian W M, Chu Y M, Song Y Q. Optimal bounds for a Toader-type mean in terms of one-parameter quadratic and contraharmonic means. J Nonlinear Sci Appl, 2016, 9(5): 3424–3432

    Google Scholar 

  35. Neuman E. Inequalities and bounds for generalized complete elliptic integrals. J Math Anal Appl, 2011, 373(1): 203–213

    Google Scholar 

  36. Chu Y M, Wang M K. Inequalities between arithmetic-geometric, Gini, and Toader means. Abstr Appl Anal, 2012, 2012: Article ID 830585

  37. Xia W F, Chu Y M. The Schur convexity of Gini mean values in the sense of harmonic mean. Acta Mathematica Scientia, 2011, 31B(3): 1103–1112

    Google Scholar 

  38. Neuman E. Inequalities for Jacobian elliptic functions and Gauss lemniscate functions. Appl Math Comput, 2012, 218(15): 7774–7782

    Google Scholar 

  39. Hua Y, Qi F. A double inequality for bounding Toader mean by the centroidal mean. Proc Indian Acad Sci Math Sci, 2014, 124(4): 727–531

    Google Scholar 

  40. Hua Y, Qi F. The best bounds for Toader mean in terms of the centroidal and arithmetic means. Filomat, 2014, 28(4): 775–780

    Google Scholar 

  41. Neuman E. Inequalities involving generalized Jacobian elliptic functions. Integral Transforms Spec Funct, 2014, 25(11): 864–873

    Google Scholar 

  42. Neuman E. Inequalities for the generalized trigonometric, hyperbolic and Jacobian elliptic functions. J Math Inequal, 2015, 9(3): 709–726

    Google Scholar 

  43. Jiang W D, Qi F. A double inequality for the combination of Toader mean and the arithmetic mean in terms of the contraharmonic mean. Publ Inst Math, 2016, 99(113): 237–242

    Google Scholar 

  44. Zhao T H, Chu Y M, Zhang W. Optimal inequalities for bounding Toader mean by arithmetic and quadratic means. J Inequal Appl, 2017, 2017: Article 26

  45. Wang, J L, Qian W M, He Z Y, Chu Y M. On approximating the Toader mean by other bivariate means. J Funct Spaces, 2019, 2019: Article 6082413

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Chu  (褚玉明).

Additional information

This research was supported by the Natural Science Foundation of China (61673169, 11301127, 11701176, 11626101, 11601485).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Qian, W., Zhang, H. et al. Sharp Bounds for Toader-Type Means in Terms of Two-Parameter Means. Acta Math Sci 41, 719–728 (2021). https://doi.org/10.1007/s10473-021-0306-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-021-0306-y

Key words

2010 MR Subject Classification

Navigation