当前位置: X-MOL 学术Environ. Earth Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Risk assessment for landslide of FAST site based on GIS and fuzzy hierarchical method
Environmental Earth Sciences ( IF 2.8 ) Pub Date : 2021-04-10 , DOI: 10.1007/s12665-021-09571-0
Wangsheng Pan , Liangtong Fu , Hanli Xiao , Xiulian Yu , Xin Li , Xiaozhou Zhang , Tianyin Zhao

In the context of circular high steep slopes within a 500-m aperture spherical radio telescope (FAST) site in Pingtang, Guizhou Province in southwest China, a pertinent small-area karst landslide risk assessment is carried out based on geographic information system and fuzzy analytical hierarchy process. Results show the following: (a) The AUC value of hazard assessment is 0.826, which means a good adaptability and a relatively higher accuracy, and the AUC value of risk assessment is 0.803, which means the accuracy of landslide risk assessment is within acceptable level. (b) The slopes of FAST area are generally at the medium or low-hazard level, with high-hazard region accounting for only 3.17% of the total area. High-hazard regions are primarily found in two locations, one is located in nearby the Guangmingding slope where the dangerous rock masses were basically cleared away, the other is located in nearby feed tower 5H where potentially unstable rock masses were reinforced to improve the stability of slope. (c) High-vulnerability area of FAST accounts for approximately 43.62%. As a direct result, the high-risk area of FAST site accounts for 34.36% based on the overlap of vulnerability and hazard. The high risk is concentrated in the surrounding areas such as the feed tower, support pillar, and telescope mirror, and the high-risk area overlaps most of the fault fracture zone in the study area. Our findings provide meaningful references for landslide prevention and monitoring of FAST areas and are instructive in theory and practice.

更新日期:2021-04-11
down
wechat
bug