当前位置: X-MOL 学术J. Braz. Soc. Mech. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Validation of a three-phase Eulerian CFD model to account for cavitation and spray atomization phenomena
Journal of the Brazilian Society of Mechanical Sciences and Engineering ( IF 1.8 ) Pub Date : 2021-03-31 , DOI: 10.1007/s40430-021-02948-z
Raúl Payri , Jaime Gimeno , Pedro Martí-Aldaraví , María Martínez

Cavitation phase change phenomenon appears in many engineering applications, often eroding and damaging surfaces, so deteriorating the performance of devices. Therefore, it is a phenomenon of great interest for the research and industry communities. In this work, three different cavitation models, the Homogeneous Relaxation Model (HRM), the Schnerr and Sauer, and the Kunz, are implemented in a Eulerian multiphase homogeneous flow Computational Fluid Dynamics (CFD) solver previously developed for simulating fully atomized sprays. The improved solver can be used then to study not only cases with cavitation, such a hydrofoil, but also situations where cavitation occurs together with liquid atomization, such as high pressure injection systems. Validation of this solver is carried out for three different cases under diverse operating conditions: a two-dimmensional throttle, a hydrofoil and a single-hole fuel injector. The Reynolds-Averaged Navier-Stokes (RANS) approach is employed for taking into account the turbulence effects. Simulation results are compared to experimental data available in the literature. Among the tested cavitation models, the HRM is the one that provides the best accuracy in the three validation cases. Nevertheless, the onset of cavitation and the area occupied by the vapor cavities are always underpredicted, by all cavitation models in all validation cases. This can be associated to the unsteady and turbulent nature of the cavitation phenomenon. Even so, the computational prediction of several parameters, such as mass flow rate through the nozzles or spray spreading angle, has an error below 5-10%, which proves the capabilities of the solver.



中文翻译:

验证了三相欧拉CFD模型以解决空化和喷雾雾化现象

空化相变现象出现在许多工程应用中,经常腐蚀和损坏表面,从而使设备的性能下降。因此,这是研究界和工业界非常感兴趣的现象。在这项工作中,在先前开发的用于模拟完全雾化喷雾的欧拉多相均相流计算流体动力学(CFD)求解器中实现了三种不同的空化模型,即均质弛豫模型(HRM),Schnerr和Sauer和Kunz。然后,可以使用改进的求解器来研究空化情况(例如水翼),还可以研究空化与液体雾化同时发生的情况(例如高压注入系统)。在不同的操作条件下,针对三种不同情况进行此求解器的验证:两维节气门,水翼和单孔喷油器。雷诺平均纳维斯托克斯(RANS)方法用于考虑湍流效应。仿真结果与文献中提供的实验数据进行了比较。在测试的空化模型中,HRM是在三种验证情况下提供最佳准确性的模型。然而,在所有验证案例中,所有气蚀模型始终会预测气蚀的发生和蒸汽气蚀所占据的面积。这可能与气蚀现象的不稳定和湍流性质有关。即使这样,几个参数的计算预测,例如通过喷嘴的质量流量或喷雾散布角,仍具有低于5-10%的误差,这证明了求解器的功能。水翼和单孔喷油器。雷诺平均纳维斯托克斯(RANS)方法用于考虑湍流效应。仿真结果与文献中提供的实验数据进行了比较。在测试的空化模型中,HRM是在三种验证情况下提供最佳准确性的模型。然而,在所有验证案例中,所有气蚀模型始终会预测气蚀的发生和蒸汽气蚀所占据的面积。这可能与气蚀现象的不稳定和湍流性质有关。即使这样,几个参数的计算预测,例如通过喷嘴的质量流量或喷雾散布角,仍具有低于5-10%的误差,这证明了求解器的功能。水翼和单孔喷油器。雷诺平均纳维斯托克斯(RANS)方法用于考虑湍流效应。仿真结果与文献中提供的实验数据进行了比较。在测试的空化模型中,HRM是在三种验证情况下提供最佳准确性的模型。然而,在所有验证案例中,所有气蚀模型始终会预测气蚀的发生和蒸汽气蚀所占据的面积。这可能与气蚀现象的不稳定和湍流性质有关。即使这样,几个参数的计算预测,例如通过喷嘴的质量流量或喷雾散布角,仍具有低于5-10%的误差,这证明了求解器的功能。雷诺平均纳维斯托克斯(RANS)方法用于考虑湍流效应。仿真结果与文献中提供的实验数据进行了比较。在测试的空化模型中,HRM是在三种验证情况下提供最佳准确性的模型。然而,在所有验证案例中,所有气蚀模型始终会预测气蚀的发生和蒸汽气蚀所占据的面积。这可能与气蚀现象的不稳定和湍流性质有关。即使这样,几个参数的计算预测,例如通过喷嘴的质量流量或喷雾散布角,仍具有低于5-10%的误差,这证明了求解器的功能。雷诺平均纳维斯托克斯(RANS)方法用于考虑湍流效应。仿真结果与文献中提供的实验数据进行了比较。在测试的空化模型中,HRM是在三种验证情况下提供最佳准确性的模型。然而,在所有验证案例中,所有气蚀模型始终会预测气蚀的发生和蒸汽气蚀所占的面积。这可能与气蚀现象的不稳定和湍流性质有关。即使这样,几个参数的计算预测,例如通过喷嘴的质量流量或喷雾散布角,仍具有低于5-10%的误差,这证明了求解器的功能。

更新日期:2021-03-31
down
wechat
bug