Skip to main content
Log in

Validation of a three-phase Eulerian CFD model to account for cavitation and spray atomization phenomena

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Cavitation phase change phenomenon appears in many engineering applications, often eroding and damaging surfaces, so deteriorating the performance of devices. Therefore, it is a phenomenon of great interest for the research and industry communities. In this work, three different cavitation models, the Homogeneous Relaxation Model (HRM), the Schnerr and Sauer, and the Kunz, are implemented in a Eulerian multiphase homogeneous flow Computational Fluid Dynamics (CFD) solver previously developed for simulating fully atomized sprays. The improved solver can be used then to study not only cases with cavitation, such a hydrofoil, but also situations where cavitation occurs together with liquid atomization, such as high pressure injection systems. Validation of this solver is carried out for three different cases under diverse operating conditions: a two-dimmensional throttle, a hydrofoil and a single-hole fuel injector. The Reynolds-Averaged Navier-Stokes (RANS) approach is employed for taking into account the turbulence effects. Simulation results are compared to experimental data available in the literature. Among the tested cavitation models, the HRM is the one that provides the best accuracy in the three validation cases. Nevertheless, the onset of cavitation and the area occupied by the vapor cavities are always underpredicted, by all cavitation models in all validation cases. This can be associated to the unsteady and turbulent nature of the cavitation phenomenon. Even so, the computational prediction of several parameters, such as mass flow rate through the nozzles or spray spreading angle, has an error below 5-10%, which proves the capabilities of the solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abbasiasl T, Niazi S, Aghdam AS, Chen H, Cebeci FÇ, Ghorbani M, Grishenkov D, Koşar A (2020) Effect of intensified cavitation using poly(vinyl alcohol) microbubbles on spray atomization characteristics in microscale. AIP Adv. https://doi.org/10.1063/1.5142607

    Article  Google Scholar 

  2. Arabnejad MH, Amini A, Farhat M, Bensow RE (2019) Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation. Int J Multiph Flow 119:123–143. https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.010

    Article  MathSciNet  Google Scholar 

  3. Bardi M, Payri R, Malbec LM, Bruneaux G, Pickett LM, Manin J, Bazyn T, Genzale CL (2012) Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels. At Sprays 22(10):807–842. https://doi.org/10.1615/AtomizSpr.2013005837

    Article  Google Scholar 

  4. Battistoni M, Duke DJ, Swantek AB, Tilocco FZ, Powell CF, Som S (2015) Effects of noncondensable gas on cavitating nozzles. At Sprays 25(6):453–483. https://doi.org/10.1615/AtomizSpr.2015011076

    Article  Google Scholar 

  5. Battistoni M, Magnotti GM, Genzale CL, Arienti M, Matusik KE, Duke DJ, Giraldo J, Ilavsky J, Kastengren AL, Powell CF, Marti-Aldaravi P (2018) Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D. SAE Technical Paper (2018-01-0277), 1–15. https://doi.org/10.4271/2018-01-0277

  6. Bilicki Z, Kestin J (1990) Physical aspects of the relaxation model in two-phase flow. Proceed Royal Soc Math Phys Eng Sci 428:379–397. https://doi.org/10.1098/rspa.1990.0040

    Article  MATH  Google Scholar 

  7. Brusiani F, Negro S, Bianchi GM, Moulai M, Neroorkar K, Schmidt DP (2013) Comparison of the homogeneous relaxation model and a rayleigh plesset cavitation model in predicting the cavitating flow through various injector hole shapes. SAE Int. https://doi.org/10.4271/2013-01-1613

    Article  Google Scholar 

  8. Cazzoli G, Falfari S, Bianchi GM, Forte C, Catellani C (2016) Assessment of the Cavitation models implemented in openFOAM®. Under DI-like Cond Energy Proced 101:638–645. https://doi.org/10.1016/j.egypro.2016.11.081

    Article  Google Scholar 

  9. Cervone A, Bramanti C, Rapposelli E, D’Agostino L (2006) Thermal cavitation experiments on a NACA 0015 hydrofoil. J Fluids Eng Trans ASME 128:326–331. https://doi.org/10.1115/1.2169808

    Article  Google Scholar 

  10. Coutier-Delgosha O, Fortes-Patella R, Reboud JL (2003) Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. J Fluids Eng Trans ASME 125:38–45. https://doi.org/10.1115/1.1524584

    Article  Google Scholar 

  11. De Lorenzo M, Lafon P, Di Matteo M, Pelanti M, Seynhaeve JM, Bartosiewicz Y (2017) Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations. Int J Multiph Flow 95:199–219. https://doi.org/10.1016/j.ijmultiphaseflow.2017.06.001

    Article  MathSciNet  Google Scholar 

  12. Duke DJ, Kastengren AL, Matusik KE, Powell CF (2018) Hard X-ray fluorescence spectroscopy of high pressure cavitating fluids in aluminum nozzles. Int J Multiph Flow 108:69–79. https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.026

    Article  Google Scholar 

  13. Gevari MT, Abbasiasl T, Niazi S, Ghorbani M, Koşar A (2020) Direct and indirect thermal applications of hydrodynamic and acoustic cavitation a review. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2020.115065

    Article  Google Scholar 

  14. Gimeno J, Bracho G, Martí-Aldaraví P, Peraza J (2016) Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. part I: inert atmosphere. Energy Conv Manag 126:1146–1156. https://doi.org/10.1016/j.enconman.2016.07.077

    Article  Google Scholar 

  15. Guo G, He Z, Zhang Z, Duan L, Guan W, Duan X, Jin Y (2020) Visual experimental investigations of string cavitation and residual bubbles in the diesel nozzle and effects on initial spray structures. Int J Engine Res 21(3):437–447. https://doi.org/10.1177/1468087418791061

    Article  Google Scholar 

  16. bo Huang H, Long Y, Ji B (2020) Experimental investigation of vortex generator influences on propeller cavitation and hull pressure fluctuations. J Hydrodyn 32:82–92. https://doi.org/10.1007/s42241-020-0005-5

    Article  Google Scholar 

  17. Issa R (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics 62(1):40–65 https://doi.org/10.1016/0021-9991(86)90099-9. https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.0103https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.0104

  18. Jahangir S, Wagner EC, Mudde RF, Poelma C (2019) Void fraction measurements in partial cavitation regimes by X-ray computed tomography. Int J Multiph Flow. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103085

    Article  Google Scholar 

  19. Kastengren AL, Tilocco FZ, Powell CF, Manin J, Pickett LM, Payri R, Bazyn T (2012) Engine Combustion Network (ECN): measurements of nozzle geometry and hydraulic behavior. At Sprays 22(12):1011–1052. https://doi.org/10.1615/AtomizSpr.2013006309

    Article  Google Scholar 

  20. Kirsch V, Hermans M, Schönberger J, Ruoff I, Willmann M, Reisgen U, Kneer R, Reddemann MA (2019) Transparent high-pressure nozzles for visualization of nozzle internal and external flow phenomena. Rev Sci Instrum 10(1063/1):5065658. https://doi.org/10.1063/1.5065658

    Article  Google Scholar 

  21. Koukouvinis P, Gavaises M, Li J, Wang L (2016) Large eddy simulation of diesel injector including cavitation effects and correlation to erosion damage. Fuel 175:26–39. https://doi.org/10.1016/j.fuel.2016.02.037

    Article  Google Scholar 

  22. Kunz RF, Boger DA, Stinebring DR, Chyczewski TS, Gibeling HJ, Venkateswaran S, Govindan TR (2000) A preconditioned navier-stokes method for two-phase flows with application to Cavitation prediction. Comput Fluids 29:849–875. https://doi.org/10.2514/6.1999-3329

    Article  MATH  Google Scholar 

  23. Kunz RF, Stinebring DR, Chyczewski TS, Boger DA, Gibeling HJ, Govindan TR (1999) Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. In: FEDSM’99, 3rd ASME/JSME Joint Fluids Engineering Conference. San Francisco

  24. Li D, Kang Y, Ding X, Liu W (2017) Experimental study on the effects of feeding pipe diameter on the cavitation erosion performance of self-resonating cavitating waterjet. Exp Therm Fluid Sci 82:314–325. https://doi.org/10.1016/j.expthermflusci.2016.11.029

    Article  Google Scholar 

  25. Li M, Yao J, Lan B, Sankin G, Zhou Y, Liu W, Xia J, Wang D, Trahey G, Zhong P (2020) Simultaneous photoacoustic imaging and cavitation mapping in Shockwave lithotripsy. IEEE Trans Med Imag 39(2):468–477. https://doi.org/10.1109/TMI.2019.2928740

    Article  Google Scholar 

  26. Menter FR (1992) Improved two-equation k-ω turbulence models for aerodynamic flows. NASA Technical Memorandum 103975, pp 1–31

  27. Morgut M, Nobile E, Biluš I (2011) Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil. Int J Multiph Flow 37(6):620–626. https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.005

    Article  Google Scholar 

  28. NIST: NIST Chemistry WebBook (2018). 10.18434/T4D303. https://doi.org/10.1615/AtomizSpr.20130058371

  29. Obeid S, Jha R, Ahmadi G (2017) RANS simulations of aerodynamic performance of NACA 0015 flapped airfoil. Fluids. https://doi.org/10.3390/fluids2010002

    Article  Google Scholar 

  30. Payri R, Gimeno J, Cuisano J, Arco J (2016) Hydraulic characterization of diesel engine single-hole injectors. Fuel 180:357–366. https://doi.org/10.1615/AtomizSpr.20130058372

    Article  Google Scholar 

  31. Payri R, Gimeno J, Martí-Aldaraví P, Alarcón M (2017) A new approach to compute temperature in a liquid-gas mixture. application to study the effect of wall nozzle temperature on a Diesel injector. Int J Heat Fluid Flow 68:79–86. https://doi.org/10.1016/j.ijheatfluidflow.2016.12.008

    Article  Google Scholar 

  32. Payri R, Gimeno J, Martí-Aldaraví P, Carreres M (2015) Assessment on Internal Nozzle Flow Initialization in Diesel Spray Simulations. SAE Technical Paper 2015-01-0921. https://doi.org/10.4271/2015-01-0921

  33. Payri R, Salvador FJ, Gimeno J, De la Morena J (2009) Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber. Int J Heat Fluid Flow 30(4):768–777. https://doi.org/10.1016/j.ijheatfluidflow.2009.03.011

    Article  Google Scholar 

  34. Payri R, Salvador FJ, Gimeno J, Venegas O (2013) Study of cavitation phenomenon using different fuels in a transparent nozzle by hydraulic characterization and visualization. Exp Therm Fluid Sci 44:235–244. https://doi.org/10.1016/j.expthermflusci.2012.06.013

    Article  Google Scholar 

  35. Rachakonda SK, Wang Y, Grover RO, Moulai M, Baldwin E, Zhang G, Parrish S, Diwakar R, Kuo TW, Schmidt DP (2018) A computational approach to predict external spray characteristics for flashing and cavitating nozzles. Int J Multiph Flow 106:21–33. https://doi.org/10.1016/j.ijmultiphaseflow.2018.04.012

    Article  MathSciNet  Google Scholar 

  36. Ro S, Kim B, Park S, Kim YB, Choi B, Jung S, Lee DW (2020) Internal caviating flow and external spray behavior characteristics according to length-to-width ratio of transparent nozzle orifice. Int J Autom Technol 21(1):181–188. https://doi.org/10.1007/s12239-020-0018-7

    Article  Google Scholar 

  37. Saha K, Som S, Battistoni M (2016) Parametric Study of HRM for Gasoline Sprays. ILASS Americas 28th Annual Conference on Liquid Atomization and Spray Systems, Dearborn, MI

  38. Salvador FJ, Carreres M, Jaramillo D, Martínez-López J (2015) Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics. Energy Conv Manag 103:284–299. https://doi.org/10.1016/j.enconman.2015.05.062

    Article  Google Scholar 

  39. Salvador FJ, Gimeno J, Pastor JM, Martí-Aldaraví P (2014) Effect of turbulence model and inlet boundary condition on the diesel spray behavior simulated by an eulerian spray atomization (ESA) model. Int J Multiph Flow 65:108–116. https://doi.org/10.1016/j.ijmultiphaseflow.2014.06.003

    Article  Google Scholar 

  40. Schnerr G, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics. In: ICMF-2001, 4th Internationl Conference on Multiphase Flow. New Orleans

  41. Shahangian N, Sharifian L, Uehara K, Noguchi Y, Martinez M, Marti-aldaravi P, Payri R (2020) Transient nozzle flow simulations of gasoline direct fuel injectors. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2020.115356

    Article  Google Scholar 

  42. Sandia National Laboratory: Engine Combustion Network (ECN) (2019). Retrieved from http://www.ecn.sandia.gov/

  43. Torregrosa AJ, Payri R, Javier Salvador F, Crialesi-Esposito M (2020) Study of turbulence in atomizing liquid jets. Int J Multiph Flow. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103328

    Article  MathSciNet  Google Scholar 

  44. Vallet A, Burluka AA, Borghi R (2001) Development of a eulerian model for the “atomization’’ of a liquid jet. Atom Sprays 11(6):619–642. https://doi.org/10.1002/fld.1650080906

    Article  Google Scholar 

  45. Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill Education, New York

    Google Scholar 

  46. Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12(6):620–631. https://doi.org/10.1063/1.168744

    Article  Google Scholar 

  47. Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26(11):1299–1310. https://doi.org/10.2514/3.10041

    Article  MathSciNet  MATH  Google Scholar 

  48. Wilcox DC (2008) Formulation of the k-\(\omega\) turbulence model revisited. AIAA J 46(11):2823–2838. https://doi.org/10.2514/1.36541

    Article  Google Scholar 

  49. Winklhofer E, Kull E, Kelz E, Morozov A (2001) Comprehensive hydraulic and flow field documentation in model throttle experiments under cavitation conditions. In: ILASS-Europe. Zurich. https://doi.org/10.13140/2.1.1716.4161

  50. Yu A, Luo X, Yang D, Zhou J (2018) Experimental and numerical study of ventilation cavitation around a NACA0015 hydrofoil with special emphasis on bubble evolution and air-vapor interactions. Eng Comput (Swansea, Wales) 35(3):1528–1542. https://doi.org/10.1108/EC-01-2017-0020

    Article  Google Scholar 

  51. Yu A, Tang Q, Zhou D (2019) Cavitation evolution around a NACA0015 hydrofoil with different cavitation models based on level set method. Appl Sci 9:758–771. https://doi.org/10.3390/app9040758

    Article  Google Scholar 

  52. Zhou H, Xiang M, Okolo PN, Wu Z, Bennett GJ, Zhang W (2019) An efficient calibration approach for cavitation model constants based on OpenFOAM platform. J Mar Sci Technol 24:1043–1056. https://doi.org/10.1007/s00773-018-0604-9

    Article  Google Scholar 

  53. Zhou H, Xiang M, Zhao S, Zhang W (2019) Development of a multiphase cavitation solver and its application for ventilated cavitating flows with natural cavitation. Int J Multiph Flow 115:62–74. https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.020

    Article  MathSciNet  Google Scholar 

  54. Zwart PJ, Gerber AG, Belamri T (2004) A two-phase flow model for predicting cavitation dynamics. In: ICMF 2004 International Conference on Multiphase Flow. Yokohama

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Martí-Aldaraví.

Additional information

Technical Editor: Erick Franklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The equipment and resources used in this work have been partially supported by the Universitat Politècnica de València in the framework of the PAID-06-18 program (reference SP20180170). Additionally, the Ph.D. student Marıía Martínez has been funded by a grant from the Government of Generalitat Valenciana with reference ACIF/2018/118 and financial support from The European Union.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payri, R., Gimeno, J., Martí-Aldaraví, P. et al. Validation of a three-phase Eulerian CFD model to account for cavitation and spray atomization phenomena. J Braz. Soc. Mech. Sci. Eng. 43, 228 (2021). https://doi.org/10.1007/s40430-021-02948-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02948-z

Keywords

Navigation