当前位置: X-MOL 学术Sci. China Phys. Mech. Astronomy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Anisotropic interaction between self-interstitial atoms and 1/2<111> dislocation loops in tungsten
Science China Physics, Mechanics & Astronomy ( IF 6.4 ) Pub Date : 2021-03-24 , DOI: 10.1007/s11433-020-1676-y
Hao Wang , Ke Xu , Dong Wang , Ning Gao , Yu-Hao Li , Shuo Jin , XiaoLin Shu , LinYun Liang , Guang-Hong Lu

We investigate the interaction between <111> self-interstitial atoms (SIAs) and 1/2<111> self-interstitial dislocation loops in tungsten (W) via atomistic simulations. We explore the variation of the anisotropic distribution of binding energies with the shapes and sizes of the 1/2[111] loop and the nonequivalent configurations of <111> SIAs. For an arbitrarily shaped loop, SIA can be more easily trapped in the concave region of the loop than the convex region, which forms a loop whose curvature is closer to that of a circular loop. The direction of SIAs can largely affect the interaction behaviors with the loop. The capture distance of an SIA by the edge of a circular-shaped 1/2[111] loop is clearly elongated along the direction of the SIA; however, it weakly depends on the size of the loop. Then, we analyze the slanted ring-like capture volume of <111> SIAs formed by the circular loop based on their generated anisotropic stress fields. Furthermore, the binding energies obtained from the elastic theory and atomistic simulations are compared. The results provide a reasonable interpretation of the growth mechanism of the loop and the anisotropic interaction that induces irregular-shaped capture volume, affording an insight into the numerical and Object Kinetic Monte Carlo simulations to evaluate the long-term and large-scale microstructural evolution and mechanical properties of W.



中文翻译:

钨中自填隙原子与1/2 <111>位错环之间的各向异性相互作用

我们通过原子模拟研究了钨中的<111>自填原子(SIA)和1/2 <111>自填位错环之间的相互作用。我们探索了结合能的各向异性分布随1/2 [111]环的形状和大小以及<111> SIA的非等价构型的变化。对于任意形状的环,SIA比凸区域更容易陷在环的凹入区域中,这形成了一个曲率更接近于圆形环的环。SIA的方向会在很大程度上影响与环路的交互行为。圆形1/2 [111]环的边缘对SIA的捕获距离明显沿SIA方向拉长;但是,它几乎取决于循环的大小。然后,我们根据圆环形成的<111> SIA的各向异性应力场,分析了它们的倾斜环状捕获量。此外,比较了从弹性理论和原子模拟获得的结合能。结果提供了合理的解释环的生长机理和各向异性相互作用引起不规则形状的捕获量,从而深入了解了数值和对象动力学蒙特卡洛模拟,以评估长期和大规模的微观结构演化,以及W的机械性能

更新日期:2021-03-30
down
wechat
bug