Skip to main content
Log in

Anisotropic interaction between self-interstitial atoms and 1/2<111> dislocation loops in tungsten

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We investigate the interaction between <111> self-interstitial atoms (SIAs) and 1/2<111> self-interstitial dislocation loops in tungsten (W) via atomistic simulations. We explore the variation of the anisotropic distribution of binding energies with the shapes and sizes of the 1/2[111] loop and the nonequivalent configurations of <111> SIAs. For an arbitrarily shaped loop, SIA can be more easily trapped in the concave region of the loop than the convex region, which forms a loop whose curvature is closer to that of a circular loop. The direction of SIAs can largely affect the interaction behaviors with the loop. The capture distance of an SIA by the edge of a circular-shaped 1/2[111] loop is clearly elongated along the direction of the SIA; however, it weakly depends on the size of the loop. Then, we analyze the slanted ring-like capture volume of <111> SIAs formed by the circular loop based on their generated anisotropic stress fields. Furthermore, the binding energies obtained from the elastic theory and atomistic simulations are compared. The results provide a reasonable interpretation of the growth mechanism of the loop and the anisotropic interaction that induces irregular-shaped capture volume, affording an insight into the numerical and Object Kinetic Monte Carlo simulations to evaluate the long-term and large-scale microstructural evolution and mechanical properties of W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. Yi, M. L. Jenkins, M. A. Kirk, Z. Zhou, and S. G. Roberts, Acta Mater. 112, 105 (2016).

    Article  ADS  Google Scholar 

  2. F. Gao, D. J. Bacon, Y. N. Osetsky, P. E. J. Flewitt, and T. A. Lewis, J. Nucl. Mater. 276, 213 (2000).

    Article  ADS  Google Scholar 

  3. S. I. Golubov, B. N. Singh, and H. Trinkaus, J. Nucl. Mater. 276, 78 (2000).

    Article  ADS  Google Scholar 

  4. M. Griffiths, J. Nucl. Mater. 159, 190 (1988).

    Article  ADS  Google Scholar 

  5. W. Setyawan, G. Nandipati, K. J. Roche, H. L. Heinisch, B. D. Wirth, and R. J. Kurtz, J. Nucl. Mater. 462, 329 (2015), arXiv: 1404.6490.

    Article  ADS  Google Scholar 

  6. S. J. Zinkle, and G. S. Was, Acta Mater. 61, 735 (2013).

    Article  ADS  Google Scholar 

  7. G. Ackland, Science 327, 1587 (2010).

    Article  Google Scholar 

  8. B. D. Wirth, Science 318, 923 (2007).

    Article  Google Scholar 

  9. B. N. Singh, S. I. Golubov, H. Trinkaus, A. Serra, Y. N. Osetsky, and A. V. Barashev, J. Nucl. Mater. 251, 107 (1997).

    Article  ADS  Google Scholar 

  10. H. Trinkaus, B. N. Singh, and A. J. E. Foreman, J. Nucl. Mater. 251, 172 (1997).

    Article  ADS  Google Scholar 

  11. H. Yin, J. Wang, W. Guo, L. Cheng, Y. Yuan, and G. Lu, Tungsten 1, 132 (2019).

    Article  Google Scholar 

  12. E. Clouet, S. Garruchet, H. Nguyen, M. Perez, and C. S. Becquart, Acta Mater. 56, 3450 (2008), arXiv: 0809.1520.

    Article  ADS  Google Scholar 

  13. J. Dérès, L. Proville, and M. C. Marinica, Acta Mater. 99, 99 (2015).

    Article  ADS  Google Scholar 

  14. D. Terentyev, P. Grammatikopoulos, D. J. Bacon, and Y. N. Osetsky, Acta Mater. 56, 5034 (2008).

    Article  ADS  Google Scholar 

  15. C. R. F. Azevedo, Eng. Failure Anal. 18, 1921 (2011).

    Article  Google Scholar 

  16. X. Yi, M. L. Jenkins, K. Hattar, P. D. Edmondson, and S. G. Roberts, Acta Mater. 92, 163 (2015).

    Article  ADS  Google Scholar 

  17. M. Kaufmann, and R. Neu, Fusion Eng. Des. 82, 521 (2007).

    Article  Google Scholar 

  18. G. Federici, C. H. Skinner, J. N. Brooks, J. P. Coad, C. Grisolia, A. A. Haasz, A. Hassanein, V. Philipps, C. S. Pitcher, J. Roth, W. R. Wampler, and D. G. Whyte, Nucl. Fusion 41, 1967 (2001).

    Article  ADS  Google Scholar 

  19. H. Bolt, V. Barabash, W. Krauss, J. Linke, R. Neu, S. Suzuki, N. Yoshida, and N. ASDEX Upgrade Team, J. Nucl. Mater. 329–333, 66 (2004).

    Article  ADS  Google Scholar 

  20. M. Rieth, R. Doerner, A. Hasegawa, Y. Ueda, and M. Wirtz, J. Nucl. Mater. 519, 334 (2019).

    Article  ADS  Google Scholar 

  21. D. R. Mason, X. Yi, M. A. Kirk, and S. L. Dudarev, J. Phys.-Condens. Matter 26, 375701 (2014), arXiv: 1402.0689.

    Article  Google Scholar 

  22. F. Ferroni, X. Yi, K. Arakawa, S. P. Fitzgerald, P. D. Edmondson, and S. G. Roberts, Acta Mater. 90, 380 (2015).

    Article  ADS  Google Scholar 

  23. X. Yi, M. L. Jenkins, M. Briceno, S. G. Roberts, Z. Zhou, and M. A. Kirk, Philos. Mag. 93, 1715 (2013).

    Article  ADS  Google Scholar 

  24. A. Hasegawa, M. Fukuda, K. Yabuuchi, and S. Nogami, J. Nucl. Mater. 471, 175 (2016).

    Article  ADS  Google Scholar 

  25. R. Alexander, M. C. Marinica, L. Proville, F. Willaime, K. Arakawa, M. R. Gilbert, and S. L. Dudarev, Phys. Rev. B 94, 024103 (2016).

    Article  ADS  Google Scholar 

  26. C. H. Woo, J. Nucl. Mater. 98, 279 (1981).

    Article  ADS  Google Scholar 

  27. W. A. Coghlan, and M. H. Yoo, Dislocation Modelling of Physical Systems (Acdamic, USA, 1981), p. 152.

    Book  Google Scholar 

  28. M. Pelfort, Y. N. Osetsky, and A. Serra, Philos. Mag. Lett. 81, 803 (2001).

    Article  ADS  Google Scholar 

  29. M. A. Puigvi, A. Serra, N. de Diego, Y. N. Osetsky, and D. J. Bacon, Philos. Mag. Lett. 84, 257 (2004).

    Article  ADS  Google Scholar 

  30. A. De Backer, D. R. Mason, C. Domain, D. Nguyen-Manh, M. C. Marinica, L. Ventelon, C. S. Becquart, and S. L. Dudarev, Phys. Scr. T170, 014073 (2017).

    Article  ADS  Google Scholar 

  31. A. De Backer, D. R. Mason, C. Domain, D. Nguyen-Manh, M. C. Marinica, L. Ventelon, C. S. Becquart, and S. L. Dudarev, Nucl. Fusion 58, 016006 (2018).

    Article  ADS  Google Scholar 

  32. N. Anento, and A. Serra, J. Nucl. Mater. 372, 239 (2008).

    Article  ADS  Google Scholar 

  33. V. I. Dubinko, A. S. Abyzov, and A. A. Turkin, J. Nucl. Mater. 336, 11 (2005).

    Article  ADS  Google Scholar 

  34. C. S. Becquart, C. Domain, U. Sarkar, A. DeBacker, and M. Hou, J. Nucl. Mater. 403, 75 (2010).

    Article  ADS  Google Scholar 

  35. G. Nandipati, W. Setyawan, H. L. Heinisch, K. J. Roche, R. J. Kurtz, and B. D. Wirth, J. Nucl. Mater. 462, 338 (2015), arXiv: 1404.5247.

    Article  ADS  Google Scholar 

  36. G. Nandipati, W. Setyawana, H. L. Heinisch, K. J. Roche, R. J. Kurtz, and B. D. Wirth, Object Kinetic Monte Carlo Simulations of Radiation Damage in Neutron-Irradiated Tungsten Part-I: Neutron Flux with a PKA Spectrum Corresponding to the High-flux Isotope Reactor, Technical Report (Cornell University, 2015).

  37. V. Jansson, and L. Malerba, J. Nucl. Mater. 452, 118 (2014), arXiv: 1407.7225.

    Article  ADS  Google Scholar 

  38. C. Varvenne, and E. Clouet, Phys. Rev. B 96, 1 (2017).

    Article  Google Scholar 

  39. J. Baštecká, and F. Kroupa, Czech. J. Phys. 14, 443 (1964).

    Article  ADS  Google Scholar 

  40. A. A. Kohnert, M. A. Cusentino, and B. D. Wirth, J. Nucl. Mater. 499, 480 (2018).

    Article  ADS  Google Scholar 

  41. D. Nguyen-Manh, A. P. Horsfield, and S. L. Dudarev, Phys. Rev. B 73, 020101 (2006).

    Article  ADS  Google Scholar 

  42. P. M. Derlet, D. Nguyen-Manh, and S. L. Dudarev, Phys. Rev. B 76, 1 (2007).

    Article  Google Scholar 

  43. A. E. Sand, K. Nordlund, and S. L. Dudarev, J. Nucl. Mater. 455, 207 (2014).

    Article  ADS  Google Scholar 

  44. J. Fu, Y. Chen, J. Fang, N. Gao, W. Hu, C. Jiang, H. B. Zhou, G. H. Lu, F. Gao, and H. Deng, J. Nucl. Mater. 524, 9 (2019).

    Article  ADS  Google Scholar 

  45. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  46. N. Juslin, and B. D. Wirth, J. Nucl. Mater. 432, 61 (2013).

    Article  ADS  Google Scholar 

  47. J. Wang, B. He, W. Song, and W. Dang, Mol. Simul. 45, 666 (2019).

    Article  Google Scholar 

  48. D. Wang, N. Gao, Z. G. Wang, X. Gao, W. H. He, M. H. Cui, L. L. Pang, and Y. B. Zhu, Nucl. Instrum. Methods Phys. Res. Sect. B-BeamInt. Mater. Atom. 384, 68 (2016).

    Article  ADS  Google Scholar 

  49. A. Stukowski, Model. Simul. Mater. Sci. Eng. 20, 045021 (2012), arXiv: 1202.5005.

    Article  ADS  Google Scholar 

  50. E. Clouet, C. Varvenne, and T. Jourdan, Comput. Mater. Sci. 147, 49 (2018).

    Article  Google Scholar 

  51. C. Varvenne, F. Bruneval, M. C. Marinica, and E. Clouet, Phys. Rev. B 88, 1 (2013), arXiv: 1310.5799.

    Article  Google Scholar 

  52. R. Siems, Phys. Status Solidi B 30, 645 (1968).

    Article  ADS  Google Scholar 

  53. F. Kroupa, Czech. J. Phys. 10, 284 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  54. M. W. Finnis, and J. E. Sinclair, Philos. Mag. A 50, 45 (1984).

    Article  ADS  Google Scholar 

  55. Y. H. Li, H. B. Zhou, H. Deng, G. Lu, and G. H. Lu, J. Nucl. Mater. 505, 30 (2018).

    Article  ADS  Google Scholar 

  56. X. Li, W. Liu, Y. Xu, C. S. Liu, Q. F. Fang, B. C. Pan, J. L. Chen, G. N. Luo, and Z. Wang, Nucl. Fusion 53, 123014 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Gao, LinYun Liang or Guang-Hong Lu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51871007, 11675230, and 12075021), and the National MCF Energy R&D Program of China (Grant No. 2018YFE0308103).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xu, K., Wang, D. et al. Anisotropic interaction between self-interstitial atoms and 1/2<111> dislocation loops in tungsten. Sci. China Phys. Mech. Astron. 64, 257012 (2021). https://doi.org/10.1007/s11433-020-1676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1676-y

Keywords

Navigation