当前位置: X-MOL 学术Heat Mass Transfer › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The combined effects of cobalt chromite nanoparticles and variable injection timing of preheated biodiesel and diesel on performance, combustion and emission characteristics of CI engine
Heat and Mass Transfer ( IF 1.7 ) Pub Date : 2021-03-12 , DOI: 10.1007/s00231-021-03044-7
Anbarasan Baluchamy , Muralidharan Karuppusamy

The performance, emission, and combustion characteristics of kapok methyl ester biodiesel in the base engine were analyzed. The kapok methyl ester oil is heated up to 110 °C employing a preheating method to reduce the fuel’s viscosity and density. The preheated oil is blended with the base fuel (i.e., diesel) to make various fuel blends. Many research findings have shown that the B20 (i.e., 20% biodiesel and 80% diesel) blend reveals superior performance, emission, and combustion characteristics in the diesel engine. Preheated oil was mixed with cobalt chromite nanoparticles in the different dosages of 50 ppm, 100 ppm, 150 ppm, and 200 ppm, respectively. When using this biodiesel in a diesel engine, the oxide of nitrogen increases. To overcome this problem, the injection timing concept was used. The injection timing was varied by 19 crank angle degree (CAD) bTDC (Retardation), 23 CAD bTDC (Standard), and 27 CAD bTDC (Advanced). The brake thermal efficiency increased with the blends B20 with cobalt 200 ppm in Retardation by 7.2% as compared with the started ignition delay. The hydrocarbon and carbon monoxide decreased in the blends B20 with cobalt 200 ppm in Retardation by 37.86% and 41.66% as compared to the standard injection timing. The oxides of nitrogen and carbon monoxide of blend B20 with cobalt 50 ppm in Retardation decreased by 16.45% and 9.5% when correlated to normal injection timing. The biodiesel of kapok oil methyl ester is utilized as an alternative fuel in the base engine to obtain better optimum results.



中文翻译:

亚铬酸钴纳米颗粒和预热生物柴油和柴油的可变喷射正时对CI发动机性能,燃烧和排放特性的综合影响

分析了木棉甲酯生物柴油在基本发动机中的性能,排放和燃烧特性。使用预热方法将木棉甲酯油加热至110°C,以降低燃料的粘度和密度。将预热的油与基础燃料(即柴油)混合,以制成各种燃料混合物。许多研究结果表明,B20(即20%的生物柴油和80%的柴油)混合物在柴油发动机中显示出卓越的性能,排放和燃烧特性。将预热的油与亚铬酸钴纳米颗粒分别以50 ppm,100 ppm,150 ppm和200 ppm的不同剂量混合。当将该生物柴油用于柴油发动机时,氮的氧化物增加。为了克服这个问题,使用了喷射正时概念。喷射正时变化了19度曲柄角(CAD)bTDC(延迟),23 CAD bTDC(标准)和27 CAD bTDC(高级)。与延迟点火延迟相比,含钴200 ppm的钴的共混物B20的制动热效率提高了7.2%。与标准喷射时间相比,在延迟试验中,钴200 ppm的共混物B20中的碳氢化合物和一氧化碳降低了37.86%和41.66%。与正常注入时间相关时,钴50 ppm钴的共混物B20中的氮和一氧化碳的氧化物降低了16.45%和9.5%。木棉油甲酯的生物柴油在基本发动机中用作替代燃料,以获得更好的最佳效果。与延迟点火延迟相比,含钴200 ppm的钴的共混物B20的制动热效率提高了7.2%。与标准喷射时间相比,在延迟试验中,钴200 ppm的共混物B20中的碳氢化合物和一氧化碳降低了37.86%和41.66%。与正常注入时间相关时,钴50 ppm钴的共混物B20中的氮和一氧化碳的氧化物降低了16.45%和9.5%。木棉油甲酯的生物柴油在基本发动机中用作替代燃料,以获得更好的最佳效果。与延迟点火延迟相比,含钴200 ppm的钴的共混物B20的制动热效率提高了7.2%。与标准喷射时间相比,在延迟试验中,钴200 ppm的共混物B20中的碳氢化合物和一氧化碳降低了37.86%和41.66%。与正常注入时间相关时,钴50 ppm钴的共混物B20中的氮和一氧化碳的氧化物降低了16.45%和9.5%。木棉油甲酯的生物柴油在基本发动机中用作替代燃料,以获得更好的最佳效果。与标准喷射正时相比,降低了66%。与正常喷射时间相关时,钴50 ppm钴的共混物B20中的氮和一氧化碳的氧化物降低了16.45%和9.5%。木棉油甲酯的生物柴油在基本发动机中用作替代燃料,以获得更好的最佳效果。与标准喷射正时相比,降低了66%。与正常注入时间相关时,钴50 ppm钴的共混物B20中的氮和一氧化碳的氧化物降低了16.45%和9.5%。木棉油甲酯的生物柴油在基本发动机中用作替代燃料,以获得更好的最佳效果。

更新日期:2021-03-12
down
wechat
bug