当前位置: X-MOL 学术Int. J. Microw. Wirel. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization of spaceflight millimeter-wave impedance matching networks using laser trimming
International Journal of Microwave and Wireless Technologies ( IF 1.4 ) Pub Date : 2021-03-11 , DOI: 10.1017/s1759078721000180
K. Parow-Souchon , D. Cuadrado-Calle , S. Rea , M. Henry , M. Merritt , P. Hunyor , N. Brewster , L. Harman , C. Spindloe , P. Sykes , P. G. Huggard , B. Moyna , B. Ellison

Realizing packaged state-of-the-art performance of monolithic microwave integrated circuits (MMICs) operating at millimeter wavelengths presents significant challenges in terms of electrical interface circuitry and physical construction. For instance, even with the aid of modern electromagnetic simulation tools, modeling the interaction between the MMIC and its package embedding circuit can lack the necessary precision to achieve optimum device performance. Physical implementation also introduces inaccuracies and requires iterative interface component substitution that can produce variable results, is invasive and risks damaging the MMIC. This paper describes a novel method for in situ optimization of packaged millimeter-wave devices using a pulsed ultraviolet laser to remove pre-selected areas of interface circuit metallization. The method was successfully demonstrated through the optimization of a 183 GHz low noise amplifier destined for use on the MetOp-SG meteorological satellite series. An improvement in amplifier output return loss from an average of 12.9 dB to 22.7 dB was achieved across an operational frequency range of 175–191 GHz and the improved circuit reproduced. We believe that our in situ tuning technique can be applied more widely to planar millimeter-wave interface circuits that are critical in achieving optimum device performance.

中文翻译:

使用激光微调优化航天毫米波阻抗匹配网络

实现在毫米波长下工作的单片微波集成电路 (MMIC) 的封装最先进性能在电气接口电路和物理结构方面提出了重大挑战。例如,即使借助现代电磁仿真工具,对 MMIC 与其封装嵌入电路之间的交互进行建模也可能缺乏实现最佳器件性能所需的精度。物理实现还引入了不准确性,并且需要迭代的接口组件替换,这会产生可变的结果,是侵入性的并且有损坏 MMIC 的风险。本文介绍了一种新的方法原位使用脉冲紫外激光对封装的毫米波器件进行优化,以去除接口电路金属化的预选区域。该方法通过对用于 MetOp-SG 气象卫星系列的 183 GHz 低噪声放大器的优化得到成功证明。在 175–191 GHz 的工作频率范围内,放大器的输出回波损耗从平均 12.9 dB 提高到 22.7 dB,并再现了改进的电路。我们相信我们的原位调谐技术可以更广泛地应用于对实现最佳器件性能至关重要的平面毫米波接口电路。
更新日期:2021-03-11
down
wechat
bug