当前位置: X-MOL 学术Z. Angew. Math. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-similar generalized Riemann problems for the 1-D isothermal Euler system
Zeitschrift für angewandte Mathematik und Physik ( IF 2 ) Pub Date : 2021-03-08 , DOI: 10.1007/s00033-021-01505-x
Helge Kristian Jenssen , Yushuang Luo

We consider self-similar solutions to the 1-dimensional isothermal Euler system for compressible gas dynamics. For each\(\beta \in {\mathbb {R}}\), the system admits solutions of the form

$$\begin{aligned} \rho (t,x)=t^\beta \Omega (\xi )\qquad u(t,x)=U(\xi )\qquad \qquad \textstyle \xi =\frac{x}{t}, \end{aligned}$$

where \(\rho \) and u denote the density and velocity fields. The ODEs for \(\Omega \) and U can be solved implicitly and yield the solution to generalized Riemann problems with initial data

$$\begin{aligned} \rho (0,x)=\left\{ \begin{array}{ll} R_l |x|^\beta &{} x<0\\ R_rx^\beta &{} x>0 \end{array}\right. \qquad u(0,x)=\left\{ \begin{array}{ll} U_l &{} x<0\\ U_r &{} x>0, \end{array}\right. \end{aligned}$$

where \(R_l,\, R_r>0\) and \(U_l,\ U_r\) are arbitrary constants. For \(\beta \in (-1,0)\), the data are locally integrable but unbounded at \(x=0\), while for \(\beta \in (0,1)\), the data are locally bounded and continuous but with unbounded gradients at \(x=0\). Any (finite) degree of smoothness of the data is possible by choosing \(\beta >1\) sufficiently large and \(U_l=U_r\). (The case \(\beta \le -1\) is unphysical as the initial density is not locally integrable and is not treated in this work.) The case \(\beta =0\) corresponds to standard Riemann problems whose solutions are combinations of backward and forward shocks and rarefaction waves. In contrast, for \(\beta \in (-1,\infty )\smallsetminus \{0\}\), we construct the self-similar solution and show that it always contains exactly two shock waves. These are necessarily generated at time \(0+\) and move apart along straight lines. We provide a physical interpretation of the solution structure and describe the behavior of the solution in the emerging wedge between the shock waves.



中文翻译:

一维等温Euler系统的自相似广义Riemann问题

我们考虑可压缩气体动力学的一维等温欧拉系统的自相似解。对于每个\(\ beta \ in {\ mathbb {R}} \),系统接受以下形式的解

$$ \ begin {aligned} \ rho(t,x)= t ^ \ beta \ Omega(\ xi)\ qquad u(t,x)= U(\ xi)\ qquad \ qquad \ textstyle \ xi = \ frac {x} {t},\ end {aligned} $$

其中\(\ rho \)u表示密度场和速度场。\(\ Omega \)U的ODE可以隐式求解,并给出具有初始数据的广义Riemann问题的解决方案

$$ \ begin {aligned} \ rho(0,x)= \ left \ {\ begin {array} {ll} R_1 | x | ^ \ beta&{} x <0 \\ R_rx ^ \ beta&{} x > 0 \ end {array} \ right。\ qquad u(0,x)= \ left \ {\ begin {array} {ll} U_1&{} x <0 \\ U_r&{} x> 0,\ end {array} \ right。\ end {aligned} $$

其中\(R_1,\,R_r> 0 \)\(U_1,\ U_r \)是任意常量。对于\(\ beta \ in(-1,0)\),数据是本地可积分的,但在\(x = 0 \)处是无界的,而对于\(\ beta \ in(0,1)\),则数据是局部有界和连续的,但在\(x = 0 \)处具有无界的渐变。通过选择足够大的\(\ beta> 1 \)\(U_l = U_r \),可以实现任何(有限)数据平滑度。(案例\(\ beta \ le -1 \)是非物理的,因为初始密度不可局部积分,因此在本工作中未进行处理。)案例\(\ beta = 0 \)对应于标准Riemann问题,其解决方案是前后冲击和稀疏波的组合。相反,对于\(\ beta \ in(-1,\ infty)\ smallsetminus \ {0 \} \),我们构造了自相似解,并表明它始终恰好包含两个冲击波。它们必定在时间\(0+ \)生成,并沿直线分开。我们提供了溶液结构的物理解释,并描述了在冲击波之间出现的楔形区域中溶液的行为。

更新日期:2021-03-08
down
wechat
bug