当前位置: X-MOL 学术Biochip J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Systematically Studying Dissolution Process of 3D Printed Acrylonitrile Butadiene Styrene (ABS) Mold for Creation of Complex and Fully Transparent Polydimethylsiloxane (PDMS) Fluidic Devices
BioChip Journal ( IF 5.5 ) Pub Date : 2021-02-17 , DOI: 10.1007/s13206-021-00009-0
Pin-Chuan Chen , Ching Chan Chou , Chung Hsuan Chiang

Our major objective in this study was to create complex, three-dimensional, and fully transparent polydimethylsiloxane (PDMS) fluidic device by revising the previously reported fabrication process and to systematically study the influence of each fabrication step to the final PDMS fluidic device. The current fabrication process adopted fused deposition modeling (FDM) 3D printers to create molds of acrylonitrile butadiene styrene (ABS) for use in PDMS casting, then solvent solution was used to dissolve the ABS mold embedded inside the PDMS device and a transparent PDMS device was created for experiments. However, it is quite challenging to ensure the complete removal of ABS molds inside the long, curly, and narrow channels. Ultrasonication was added into our fabrication process to improve the efficacy of dissolving ABS molds inside the channels and conclusions can be derived from these experiments: (1) ultrasonication-assisted dissolution is an effective approach to the complete removal of ABS molds embedded inside these long, curly, and narrow channels (for example, the mixer demonstrated herein had a diameter of 2 mm and length of 162 mm); (2) the application of solvent vapor polishing to 3D-printed molds is highly effective in reducing the surface roughness of the molds (8 ~ 10 μm before polishing to 038 ~ 0.5 μm after polishing) and important to preserve the transparency of the resulting PDMS devices; (3) ensuring the circulation of fresh solvent solution is critical to shorten the dissolution process.



中文翻译:

系统地研究3D打印的丙烯腈丁二烯苯乙烯(ABS)模具的溶解过程,以创建复杂且完全透明的聚二甲基硅氧烷(PDMS)流体装置

我们这项研究的主要目标是通过修改先前报道的制造工艺来制造复杂的,三维的,完全透明的聚二甲基硅氧烷(PDMS)流体装置,并系统地研究每个制造步骤对最终PDMS流体装置的影响。当前的制造过程采用熔融沉积建模(FDM)3D打印机来创建用于PDMS铸造的丙烯腈丁二烯苯乙烯(ABS)模具,然后使用溶剂溶液溶解嵌入PDMS装置内部的ABS模具,然后使用透明PDMS装置。为实验而创建。但是,要确保完全去除长,卷曲和狭窄通道内的ABS模具是非常困难的。我们在制造过程中加入了超声处理技术,以提高将ABS模具溶解在通道内的效率,并且可以从这些实验中得出结论:(1)超声辅助溶解是一种有效的方法,可以完全清除埋藏在这些较长区域中的ABS模具,卷曲且狭窄的通道(例如,此处展示的混合器直径为2毫米,长度为162毫米);(2)在3D打印的模具上应用溶剂气相抛光对降低模具的表面粗糙度(抛光前的表面粗糙度为8〜10μm,抛光后的表面粗糙度为038〜0.5μm)非常有效,并且对于保持所得PDMS的透明度非常重要设备; (3)确保新鲜溶剂溶液的循环对于缩短溶解过程至关重要。(1)超声辅助溶解是一种完全去除嵌入在这些长,卷曲和狭窄通道内的ABS模具的有效方法(例如,此处展示的混合器直径为2 mm,长度为162 mm);(2)在3D打印的模具上应用溶剂气相抛光对降低模具的表面粗糙度(抛光前的表面粗糙度为8〜10μm,抛光后的表面粗糙度为038〜0.5μm)非常有效,并且对于保持所得PDMS的透明度非常重要设备; (3)确保新鲜溶剂溶液的循环对于缩短溶解过程至关重要。(1)超声辅助溶解是一种完全去除嵌入在这些长,卷曲和狭窄通道内的ABS模具的有效方法(例如,此处展示的混合器直径为2 mm,长度为162 mm);(2)在3D打印的模具上应用溶剂气相抛光对降低模具的表面粗糙度(抛光前的表面粗糙度为8〜10μm,抛光后的表面粗糙度为038〜0.5μm)非常有效,并且对于保持所得PDMS的透明度非常重要设备; (3)确保新鲜溶剂溶液的循环对于缩短溶解过程至关重要。(2)在3D打印的模具上应用溶剂气相抛光对降低模具的表面粗糙度(抛光前的表面粗糙度为8〜10μm,抛光后的表面粗糙度为038〜0.5μm)非常有效,并且对于保持所得PDMS的透明度非常重要设备; (3)确保新鲜溶剂溶液的循环对于缩短溶解过程至关重要。(2)在3D打印的模具上应用溶剂气相抛光对降低模具的表面粗糙度(抛光前的表面粗糙度为8〜10μm,抛光后的表面粗糙度为038〜0.5μm)非常有效,并且对于保持所得PDMS的透明度非常重要设备; (3)确保新鲜溶剂溶液的循环对于缩短溶解过程至关重要。

更新日期:2021-02-17
down
wechat
bug