当前位置: X-MOL 学术Biomech. Model. Mechanobiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Simulation of Blood Flows in Patient-specific Abdominal Aorta with Primary Organs
Biomechanics and Modeling in Mechanobiology ( IF 3.0 ) Pub Date : 2021-02-13 , DOI: 10.1007/s10237-021-01419-7
Shanlin Qin 1 , Rongliang Chen 1, 2 , Bokai Wu 1 , Wen-Shin Shiu 1 , Xiao-Chuan Cai 3
Affiliation  

The abdominal aorta is the largest artery in the abdominal cavity that supplies blood flows to vital organs through the complex visceral arterial branches, including the celiac trunk (the liver, stomach, spleen, etc.), the renal arteries (the kidneys) and the superior and inferior mesenteric arteries (the small and large intestine, pancreas, etc.). An accurate simulation of blood flows in this network of arteries is important for the understanding of the hemodynamics in various organs of healthy and diseased patients, but the computational cost is very high. As a result, most researchers choose to focus on a portion of the artery or use a low-dimensional approximation of the artery. In the present work, we introduce a parallel algorithm for the modeling of pulsatile flows in the abdominal aorta with branches to the primary organs, and an organ-based two-level method for calculating the resistances for the outflow boundary conditions. With this highly parallel approach, the simulation of the blood flow for a cardiac cycle of the anatomically detailed aorta can be obtained within a few hours, and the blood distribution to organs including liver, spleen and kidneys are also computed with certain accuracy. Moreover, we discuss the significant hemodynamic differences resulted from the influence of the peripheral branches. In addition, we examine the accuracy of the results with respect to the mesh size and time-step size and show the high parallel scalability of the proposed algorithm with up to 3000 processor cores.



中文翻译:

具有主要器官的患者特定腹主动脉中血流的数值模拟

腹主动脉是腹腔中最大的动脉,通过复杂的内脏动脉分支向重要器官供应血液,包括腹腔干(肝、胃、脾等)、肾动脉(肾脏)和肠系膜上、下动脉(小肠和大肠、胰腺等)。准确模拟该动脉网络中的血流对于了解健康和患病患者各个器官的血流动力学很重要,但计算成本非常高。因此,大多数研究人员选择关注动脉的一部分或使用动脉的低维近似。在目前的工作中,我们引入了一种并行算法,用于对分支到主要器官的腹主动脉中的脉动流进行建模,计算流出边界条件阻力的基于器官的两级方法。通过这种高度并行的方法,可以在几个小时内获得解剖学详细的主动脉心动周期的血流模拟,并且还可以以一定的精度计算肝脏、脾脏和肾脏等器官的血液分布。此外,我们讨论了由外周分支的影响导致的显着血流动力学差异。此外,我们检查了结果在网格大小和时间步长方面的准确性,并展示了所提出的算法具有高达 3000 个处理器内核的高并行可扩展性。可以在几个小时内获得解剖学详细的主动脉心动周期的血流模拟,并且还具有一定的精度计算到肝脏、脾脏和肾脏等器官的血液分布。此外,我们讨论了由外周分支的影响导致的显着血流动力学差异。此外,我们检查了结果在网格大小和时间步长方面的准确性,并展示了所提出的算法具有高达 3000 个处理器内核的高并行可扩展性。可以在几个小时内获得解剖学详细的主动脉心动周期的血流模拟,并且还具有一定的精度计算到肝脏、脾脏和肾脏等器官的血液分布。此外,我们讨论了由外周分支的影响导致的显着血流动力学差异。此外,我们检查了结果在网格大小和时间步长方面的准确性,并展示了所提出的算法具有高达 3000 个处理器内核的高并行可扩展性。我们讨论了由外周分支的影响导致的显着血流动力学差异。此外,我们检查了结果在网格大小和时间步长方面的准确性,并展示了所提出的算法具有高达 3000 个处理器内核的高并行可扩展性。我们讨论了由外周分支的影响导致的显着血流动力学差异。此外,我们检查了结果在网格大小和时间步长方面的准确性,并展示了所提出的算法具有高达 3000 个处理器内核的高并行可扩展性。

更新日期:2021-02-15
down
wechat
bug