当前位置: X-MOL 学术Front. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rock Burst Evaluation Using the CRITIC Algorithm-based Cloud Model
Frontiers in Physics ( IF 3.1 ) Pub Date : 2020-12-23 , DOI: 10.3389/fphy.2020.593701
Jiachuang Wang , Mingjian Huang , Jiang Guo

Under high-stress conditions, rock burst disasters can significantly impact underground civil engineering construction. For underground metal mines, rock burst evaluations and prevention during mining have become major research topics, and the prediction and prevention of rock burst must be based on the study of rocks and rock burst tendencies. To further prevent the risk of geological disasters and provide timely warnings, a finite-interval cloud model based on the CRITIC algorithm is proposed in this paper to address the uncertainty of rock burst evaluation, the complexity under multi-factor interactions, and the correlations between factors, and it then realizes a preliminary qualitative judgment of rock burst disasters. This paper selects the uniaxial compressive strength σc (I1), ratio of the uniaxial compressive strength to the tensile strength σc/σt (brittleness coefficient, I2), elastic deformation energy index Wet (I3), ratio of the maximum tangential stress to the uniaxial compressive strength σθ/σc (stress coefficient, I4) of the rock, depth of the roadway H (I5), and integrity coefficient of the rock mass Kv (I6) as indicators for rock burst propensity predictions. The CRITIC algorithm is used to consider the relationships between the evaluation indicators, and it is combined with an improved cloud model to verify 20 groups of learning samples. The calculation results obtained by the prediction method are basically consistent with the actual situation. The validity of the model is tested, and then the model is applied to the Dongguashan Copper Mine in Tongling, Anhui Province, China, for rock burst evaluation.

更新日期:2021-02-04
down
wechat
bug