当前位置: X-MOL 学术Rare Met. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
When thermoelectric materials come across with magnetism
Rare Metals ( IF 8.8 ) Pub Date : 2021-01-07 , DOI: 10.1007/s12598-020-01652-6
Chen-Chen Zhao , Chong Xiao

Abstract Nowadays, thermoelectric materials have attracted a lot of attention as they can directly convert heat into electricity and vice versa. However, while strenuous efforts have been made, those conventional strategies are still inevitably going to meet their performance optimization limits. For this reason, brand new strategies are badly needed to achieve further enhancement. Here, the roles played by magnetism in recent advances of thermoelectric optimization are concluded. Firstly, magnetic thermoelectric materials can just be treated like other normal materials because the use of universal optimization strategies can still get good results. So, it is not a situation which is all or nothing and the tactics of using magnetism for thermoelectric optimization can coexist with other strategies. Besides, through magnetic doping, we can introduce and adjust magnetism in materials for further optimization. Magnetism provides more possibilities in thermoelectric optimization as it can directly influence the spin states in materials. Furthermore, in the form of magnetic second-phase nanoclusters, magnetism can be introduced to thermoelectric materials to conquer the dilemma that the solid solubility of many magnetic ions in thermoelectric materials is too low to have any significant effect on thermoelectric properties. Finally, when exposed to an external magnetic field, topological materials can rely on its unique band structures to optimize. Graphic Abstract

中文翻译:

当热电材料遇到磁性时

摘要 如今,热电材料由于可以直接将热量转化为电能,反之亦然,因此受到了广泛的关注。然而,尽管付出了艰辛的努力,但那些传统策略仍然不可避免地会达到其性能优化的限制。因此,迫切需要全新的策略来实现进一步的增强。在这里,总结了磁性在热电优化的最新进展中所起的作用。首先,磁性热电材料可以像其他普通材料一样处理,因为使用通用优化策略仍然可以获得良好的结果。因此,这不是一种全有或全无的情况,利用磁力进行热电优化的策略可以与其他策略共存。此外,通过磁掺杂,我们可以在材料中引入和调整磁性以进一步优化。磁性为热电优化提供了更多可能性,因为它可以直接影响材料中的自旋态。此外,以磁性第二相纳米团簇的形式,可以将磁性引入热电材料,以克服许多磁性离子在热电材料中的固溶度太低而无法对热电性能产生任何显着影响的困境。最后,当暴露于外部磁场时,拓扑材料可以依靠其独特的能带结构进行优化。图形摘要 以磁性第二相纳米团簇的形式,可以将磁性引入热电材料,以克服许多磁性离子在热电材料中的固溶度太低而对热电性能没有任何显着影响的困境。最后,当暴露于外部磁场时,拓扑材料可以依靠其独特的能带结构进行优化。图形摘要 以磁性第二相纳米团簇的形式,可以将磁性引入热电材料,以克服许多磁性离子在热电材料中的固溶度太低而对热电性能没有任何显着影响的困境。最后,当暴露于外部磁场时,拓扑材料可以依靠其独特的能带结构进行优化。图形摘要
更新日期:2021-01-07
down
wechat
bug