Skip to main content
Log in

When thermoelectric materials come across with magnetism

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Nowadays, thermoelectric materials have attracted a lot of attention as they can directly convert heat into electricity and vice versa. However, while strenuous efforts have been made, those conventional strategies are still inevitably going to meet their performance optimization limits. For this reason, brand new strategies are badly needed to achieve further enhancement. Here, the roles played by magnetism in recent advances of thermoelectric optimization are concluded. Firstly, magnetic thermoelectric materials can just be treated like other normal materials because the use of universal optimization strategies can still get good results. So, it is not a situation which is all or nothing and the tactics of using magnetism for thermoelectric optimization can coexist with other strategies. Besides, through magnetic doping, we can introduce and adjust magnetism in materials for further optimization. Magnetism provides more possibilities in thermoelectric optimization as it can directly influence the spin states in materials. Furthermore, in the form of magnetic second-phase nanoclusters, magnetism can be introduced to thermoelectric materials to conquer the dilemma that the solid solubility of many magnetic ions in thermoelectric materials is too low to have any significant effect on thermoelectric properties. Finally, when exposed to an external magnetic field, topological materials can rely on its unique band structures to optimize.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Martin-Gonzalez M, Caballero-Calero O, Diaz-Chao P. Nanoengineering thermoelectrics for 21st century: energy harvesting and other trends in the field. Renew Sustain Energy Rev. 2013;24:288.

    CAS  Google Scholar 

  2. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.

    CAS  Google Scholar 

  3. Xin JZ, Fu CG, Shi WJ, Li GW, Auffermann G, Qi YP, Zhu TJ, Zhao XB, Felser C. Synthesis and thermoelectric properties of Rashba semiconductor BiTeBr with intensive texture. Rare Met. 2018;37(4):274.

    CAS  Google Scholar 

  4. Zhang YM, Shen XC, Yan YC, Wang GW, Wang GY, Li JY, Lu X, Zhou XY. Enhanced thermoelectric performance of ternary compound Cu3PSe4 by defect engineering. Rare Met. 2020;39(11):1256.

    CAS  Google Scholar 

  5. Feng D, Chen YX, Fu LW, Li J, He JQ. SnSe + Ag2Se composite engineering with ball milling for enhanced thermoelectric performance. Rare Met. 2018;37(4):333.

    CAS  Google Scholar 

  6. Kosuga A, Fujii Y, Horie A. High-temperature formation phases and crystal structure of hot-pressed thermoelectric compounds with chalcopyrite-type structure. Rare Met. 2018;37(4):360.

    CAS  Google Scholar 

  7. Son JH, Oh MW, Kim BS, Park SD. Optimization of thermoelectric properties of n-type Bi2(Te, Se)3 with optimizing ball milling time. Rare Met. 2018;37(4):351.

    CAS  Google Scholar 

  8. Jiang YZ, Duan XK. Thermoelectric properties of Bi0.5Sb1.4−xNaxIn0.1Te3 alloys. Rare Met. 2019;38(12):1187.

    CAS  Google Scholar 

  9. Liu R, Tan X, Liu YC, Ren GK, Lan JL, Zhou ZF, Nan CW, Lin YH. BiCuSeO as state-of-the-art thermoelectric materials for energy conversion: from thin films to bulks. Rare Met. 2018;37(4):259.

    CAS  Google Scholar 

  10. Shen XC, Zhang X, Zhang B, Wang GY, He J, Zhou XY. Optimizing thermoelectric properties of BiSe through Cu additive enhanced effective mass and phonon scattering. Rare Met. 2020;39(12):1374.

    CAS  Google Scholar 

  11. Zhai RS, Wu YH, Zhu TJ, Zhao XB. Thermoelectric performance of p-type zone-melted Se-doped Bi0.5Sb1.5Te3 alloys. Rare Met. 2018;37(4):308.

    CAS  Google Scholar 

  12. Zhang SS, Yang DF, Shaheen N, Shen XC, Xie DD, Yan YC, Lu X, Zhou XY. Enhanced thermoelectric performance of CoSbS0.85Se0.15 by point defect. Rare Met. 2018;37(4):326.

    CAS  Google Scholar 

  13. Zou TH, Xie WJ, Widenmeyer M, Xiao XX, Qin XY, Weidenkaff A. Enhancing point defect scattering in copper antimony selenides via Sm and S Co-doping. Rare Met. 2018;37(4):290.

    CAS  Google Scholar 

  14. Hu C, Ni P, Zhan L, Zhao H, He J, Tritt TM, Huang J, Sumpter BG. Theoretical investigations of electrical transport properties in CoSb3 skutterudites under hydrostatic loadings. Rare Met. 2018;37(4):316.

    CAS  Google Scholar 

  15. He W, Wang D, Wu H, Xiao Y, Zhang Y, He D, Feng Y, Hao YJ, Dong JF, Chetty R, Hao L, Chen D, Qin J, Yang Q, Li X, Song JM, Zhu Y, Xu W, Niu C, Li X, Wang G, Liu C, Ohta M, Pennycook SJ, He J, Li JF, Zhao LD. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science. 2019;365(6460):1418.

    CAS  Google Scholar 

  16. Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 2008;321(5888):554.

    CAS  Google Scholar 

  17. Li X, Liu PF, Zhao E, Zhang Z, Guidi T, Le MD, Avdeev M, Ikeda K, Otomo T, Kofu MJ. Ultralow thermal conductivity from transverse acoustic phonon suppression in distorted crystalline α-MgAgSb. Nat. Commun. 2020;11(1):1.

    CAS  Google Scholar 

  18. Dresselhaus MS, Chen G, Tang MY, Yang R, Lee H, Wang D, Ren Z, Fleurial JP, Gogna P. New directions for low-dimensional thermoelectric materials. Adv Mater. 2007;19(8):1043.

    CAS  Google Scholar 

  19. Yang J, Zhang W, Bai SQ, Mei Z, Chen LD. Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R = La, Ce, and Sr). Appl Phys Lett. 2007;90(19):192111.

    Google Scholar 

  20. Diakhate MS, Hermann RP, Moechel A, Sergueev I, Sondergaard M, Christensen M, Verstraete MJ. Thermodynamic, thermoelectric, and magnetic properties of FeSb2: a combined first-principles and experimental study. Phys Rev B. 2011;84(12):125210.

    Google Scholar 

  21. Petrovic C, Kim JW, Bud’ko SL, Goldman A, Canfield PC, Choe W, Miller G. Anisotropy and large magnetoresistance in the narrow-gap semiconductor FeSb2. Phys Rev B. 2003;67(15):155205.

    Google Scholar 

  22. Hulliger FJ. Marcasite-type semiconductors. Nature. 1963;198(4885):1081.

    Google Scholar 

  23. Holseth H, Kjekshus A. COMPOUNDS with the marcasite type crystal structure PT 4. Crystal structure of FeSb2. Acta Chem Scand. 1969;23(9):3043.

    CAS  Google Scholar 

  24. Petrovic C, Lee Y, Vogt T, Lazarov ND, Bud’ko S, Canfield P. Kondo insulator description of spin state transition in FeSb2. Phys Rev B. 2005;72(4):045103.

    Google Scholar 

  25. Bentien A, Madsen GKH, Johnsen S, Iversen BB. Experimental and theoretical investigations of strongly correlated FeSb2-xSnx. Phys Rev B. 2006;74(20):045103.

    Google Scholar 

  26. Perucchi A, Degiorgi L, Hu R, Petrovic C, Mitrović V. Optical investigation of the metal-insulator transition in FeSb2. Eur Phys J B. 2006;54(2):175.

    CAS  Google Scholar 

  27. Takahashi H, Okazaki R, Ishiwata S, Taniguchi H, Okutani A, Hagiwara M, Terasaki I. Colossal Seebeck effect enhanced by quasi-ballistic phonons dragging massive electrons in FeSb2. Nat Commun. 2016;7(1):1.

    Google Scholar 

  28. Freericks JK, Demchenko D, Joura A, Zlatić V. Optimizing thermal transport in the Falicov-Kimball model: the binary-alloy picture. Phys Rev B. 2003;68(19):195120.

    Google Scholar 

  29. Bentien A, Johnsen S, Madsen G, Iversen BB, Steglich F. Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2. Europhys Lett. 2007;80(1):17008.

    Google Scholar 

  30. Takahashi H, Okazaki R, Terasaki I, Yasui Y. Origin of the energy gap in the narrow-gap semiconductor FeSb2 revealed by high-pressure magnetotransport measurements. Phys Rev B. 2013;88(16):165205.

    Google Scholar 

  31. Sun P, Oeschler N, Johnsen S, Iversen BB, Steglich F. Narrow band gap and enhanced thermoelectricity in FeSb2. Dalton Trans. 2010;39(4):1012.

    CAS  Google Scholar 

  32. Sun P, Oeschler N, Johnsen S, Iversen BB, Steglich F. Huge thermoelectric power factor: FeSb2 versus FeAs2 and RuSb2. Appl Phys Express. 2009;2(9):091102.

    Google Scholar 

  33. Liu K, Li J. Thermoelectric properties of bulk FeSb2 and the composite of FeSb2 and CoSb3 prepared by sintering. In: Proceedings of International Conference on Green Building, Materials and Civil Engineering (GBMCE 2011). Shangri La; 2011. 71: 3741.

  34. Bentien A, Madsen GKH, Johnsen S, Iversen BB, Lee. Thermoelectric properties of hole doped FeSb2. In: Proceedings of 24th International Conference on Thermoelectrics. South Carolina; 2005. 201.

  35. Sun P, Oeschler N, Johnsen S, Iversen BB, Steglich F. Thermoelectric properties of the narrow-gap semiconductors FeSb2 and RuSb2: a comparative study. In: Proceedings of 25th International Conference on Low Temperature Physics. Amsterdam; 2009. 012049.

  36. Sun Y, Johnsen S, Eklund P, Sillassen M, Bottiger J, Oeschler N, Sun P, Steglich F, Iversen BB. Thermoelectric transport properties of highly oriented FeSb2 thin films. J Appl Phys. 2009;106(3):033710.

    Google Scholar 

  37. Sun Y, Zhang E, Johnsen S, Sillassen M, Sun P, Steglich F, Bottiger J, Iversen BB. Orientation control and thermoelectric properties of FeSb2 films. J Phys D Appl Phys. 2010;43(20):205402.

    Google Scholar 

  38. Tomczak JM, Haule K, Miyake T, Georges A, Kotliar G. Thermopower of correlated semiconductors: application to FeAs2 and FeSb2. Phys Rev B. 2010;82(8):085104.

    Google Scholar 

  39. Sun P, Sondergaard M, Sun Y, Johnsen S, Iversen BB, Steglich F. Unchanged thermopower enhancement at the semiconductor-metal transition in correlated FeSb2-xTex. Appl Phys Lett. 2011;98(7):072105.

    Google Scholar 

  40. Sun Y, Canulescu S, Sun P, Steglich F, Pryds N, Schou J, Iversen BB. Growth and thermoelectric properties of FeSb2 films produced by pulsed laser deposition. Appl Phys A Mater Sci Process. 2011;104(3):883.

    CAS  Google Scholar 

  41. Sun Y, Canulescu S, Sun P, Steglich F, Pryds N, Schou J, Iversen BB. Pulsed laser deposition growth of FeSb2 films for thermoelectric applications. Mater Chem Phys. 2011;129(1–2):105.

    CAS  Google Scholar 

  42. Pearson W. Discussion of the electrical properties of compounds with the nickel arsenide structure. Can J Phys. 1957;35(8):886.

    CAS  Google Scholar 

  43. Allen JW, Lucovsky G, Mikkelsen JC. Optical-properties and electronic structure of crossroads material MnTe. Solid State Commun. 1977;24(5):367.

    CAS  Google Scholar 

  44. Podgorny M, Oleszkiewicz J. Electronic structure of anti-ferromagnetic MnTe. J Phys C: Solid State Phys. 1983;16(13):2547.

    CAS  Google Scholar 

  45. Zheng Z, Su X, Deng R, Stoumpos C, Xie H, Liu W, Yan Y, Hao S, Uher C, Wolverton C, Kanatzidis MG, Tang X. Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance. J Am Chem Soc. 2018;140(7):2673.

    CAS  Google Scholar 

  46. Wu H, Chang C, Feng D, Xiao Y, Zhang X, Pei Y, Zheng L, Wu D, Gong S, Chen Y, He J, Kanatzidis MG, Zhao LD. Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. Energy Environ Sci. 2015;8(11):3298.

    CAS  Google Scholar 

  47. Tan G, Shi F, Hao S, Chi H, Bailey TP, Zhao LD, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. J Am Chem Soc. 2015;137(35):11507.

    CAS  Google Scholar 

  48. Wu Y, Nan P, Chen Z, Zeng Z, Lin S, Zhang X, Dong H, Chen Z, Gu H, Li W, Chen Y, Ge B, Pei Y. Manipulation of band degeneracy and lattice strain for extraordinary PbTe thermoelectrics. Research. 2020. https://doi.org/10.34133/2020/8151059.

    Article  Google Scholar 

  49. Ren Y, Yang J, Jiang Q, Zhang D, Zhou Z, Li X, Xin J, He X. Synergistic effect by Na doping and S substitution for high thermoelectric performance of p-type MnTe. J Mater Chem C. 2017;5(21):5076.

    CAS  Google Scholar 

  50. Kim B, Kim I, Min Bk OhM, Park S, Lee H. Thermoelectric properties of non-stoichiometric MnTe compounds. Electron Mater Lett. 2013;9(4):477.

    CAS  Google Scholar 

  51. Xie W, Populoh S, Galazka K, Xiao X, Sagarna L, Liu Y, Trottmann M, He J, Weidenkaff A. Thermoelectric study of crossroads material MnTe via sulfur doping. J Appl Phys. 2014;115(10):103707.

    Google Scholar 

  52. Basit A, Yang J, Jiang Q, Xin J, Li X, Li S, Li S, Long Q. Simultaneous regulation of electrical and thermal transport properties in MnTe chalcogenides via the incorporation of p-type Sb2Te3. J Mater Chem A. 2018;6(46):23473.

    CAS  Google Scholar 

  53. Tsujii N, Mori T. High thermoelectric power factor in a carrier-doped magnetic semiconductor CuFeS2. Appl Phys Express. 2013;6(4):043001.

    Google Scholar 

  54. Ang R, Khan AU, Tsujii N, Takai K, Nakamura R, Mori T. Thermoelectricity generation and electron-magnon scattering in a natural chalcopyrite mineral from a deep-sea hydrothermal vent. Angew Chem Int Ed. 2015;54(44):13101.

    Google Scholar 

  55. Bailyn M. Maximum variational principle for conduction problems in a magnetic field, and theory of magnon drag. Phys Rev. 1962;126(6):2040.

    Google Scholar 

  56. Watzman SJ, Duine RA, Tserkovnyak Y, Boona SR, Jin H, Prakash A, Zheng Y, Heremans JP. Magnon-drag thermopower and Nernst coefficient in Fe Co, and Ni. Phys Rev B. 2016;94(14):144407.

    Google Scholar 

  57. Ahmed AM, Papavassiliou G, Mohamed HF, Ibrahim EMM. Structural, magnetic and electronic properties on the Li-doped manganites. J Magn Magn Mater. 2015;392:27.

    CAS  Google Scholar 

  58. Kittel C. Magnons and their interactions with phonons and photons. J Phys Radium. 1959;20(2–3):145.

    Google Scholar 

  59. Blatt FJ, Flood DJ, Rowe V, Schroeder PA, Cox JE. Magnon-drag thermopower in iron. Phys Rev Lett. 1967;18(11):395.

    CAS  Google Scholar 

  60. Bhandari CM, Verma GS. Magnon-drag thermoelectric power. Nuovo Cimento B. 1969;60(2):249.

    Google Scholar 

  61. Ignaciuk J, Adamowicz L, Zagorski A. Magnon-drag thermoelectric-power of a narrow-band antiferromagnetic semiconductor. Acta Phys Pol, A. 1976;49(4):495.

    Google Scholar 

  62. Patil CG, Krishnamurthy BS. Magnon drag thermoelectric-power in ferromagnetic semiconductors. Phys Status Solidi B. 1978;88(2):K117.

    Google Scholar 

  63. Wasscher JD, Haas C. Contribution of magnon-drag to the thermoelectric power of antiferromagnetic MnTe. Phys Lett. 1964;8(5):302.

    CAS  Google Scholar 

  64. Venkataiah G, Reddy PV. Magnon drag contribution to thermopower of Nd0.67Sr0.33MnO3 nanocrystalline manganites. J Appl Phys. 2009;106(3):033706.

    Google Scholar 

  65. Byung HK, Jun SK, Tae HP, Dea SL, Yung WP. Magnon drag effect as the dominant contribution to the thermopower in Bi0.5-xLaxSr0.5MnO3 (0.1 ≤ x ≤ 0.4). J Appl Phys. 2008;103(11):113717.

    Google Scholar 

  66. Zheng Y, Lu T, Polash MMH, Rasoulianboroujeni M, Liu N, Manley ME, Deng Y, Sun PJ, Chen XL, Hermann RP, Vashaee D, Heremans JP, Zhao H. Paramagnon drag in high thermoelectric figure of merit Li-doped MnTe. Sci Adv. 2019;5(9):eaat9461.

    CAS  Google Scholar 

  67. Motohashi T, Naujalis E, Ueda R, Isawa K, Karppinen M, Yamauchi H. Simultaneously enhanced thermoelectric power and reduced resistivity of NaxCo2O4 by controlling Na nonstoichiometry. Appl Phys Lett. 2001;79(10):1480.

    CAS  Google Scholar 

  68. Li QH, Zhang YY, Xu MX. Unconventional magnetic transition in NaxCoO2 (x > 0.7) single crystals. J Supercond Novel Magn. 2014;27(5):1235.

    CAS  Google Scholar 

  69. Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B. 1997;56(20):R12685.

    CAS  Google Scholar 

  70. Wang Y, Rogado NS, Cava RJ, Ong N. Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature. 2003;423(6938):425.

    CAS  Google Scholar 

  71. Koshibae W, Tsutsui K, Maekawa S. Thermopower in cobalt oxides. Phys Rev B. 2000;62(11):6869.

    CAS  Google Scholar 

  72. Koshibae W, Maekawa S. Effects of spin and orbital degeneracy on the thermopower of strongly correlated systems. Phys Rev Lett. 2001;87(23):236603.

    CAS  Google Scholar 

  73. Limelette P, Hébert S, Hardy V, Frésard R, Simon C, Maignan A. Scaling behavior in thermoelectric misfit cobalt oxides. Phys Rev Lett. 2006;97(4):046601.

    CAS  Google Scholar 

  74. Liu CJ, Nayak PK, Williams G. Magnetothermopower and magnetoresistivity of RuSr2Gd2−xCexCu2O10+δ (x = 0.6, 1.0). Appl Phys Lett. 2007;91(12):014502.

    Google Scholar 

  75. Tang G, Yang T, Xu X, Tang C, Qiu L, Zhang Z, Lv L, Wang Z, Du Y. Enhancement of the spin entropy in NaxCo2O4 by Ni doping. Appl Phys Lett. 2010;97(3):032108.

    Google Scholar 

  76. Xiao C, Li K, Zhang JJ, Tong W, Liu YW, Li Z, Huang PC, Pan BC, Su HB, Xie Y. Magnetic ions in wide band gap semiconductor nanocrystals for optimized thermoelectric properties. Mater Horiz. 2014;1(1):81.

    CAS  Google Scholar 

  77. Wen Q, Chang C, Pan L, Li X, Yang T, Guo H, Wang Z, Zhang J, Xu F, Zhang Z, Tang G. Enhanced thermoelectric performance of BiCuSeO by increasing Seebeck coefficient through magnetic ion incorporation. J Mater Chem A. 2017;5(26):13392.

    CAS  Google Scholar 

  78. Chen DS, Zhao Y, Chen YN, Lu TY, Wang YY, Zhou J, Liang ZQ. Thermoelectric enhancement of ternary copper chalcogenide nanocrystals by magnetic nickel doping. Adv Electron Mater. 2016;2(6):1500473.

    Google Scholar 

  79. Li W, Chen Z, Lin S, Chang Y, Ge B, Chen Y, Pei Y. Band and scattering tuning for high performance thermoelectric Sn1− xMnxTe alloys. J Materiomics. 2015;1(4):307.

    Google Scholar 

  80. He J, Tan X, Xu J, Liu GQ, Shao H, Fu Y, Wang X, Liu Z, Xu J, Jiang H. Valence band engineering and thermoelectric performance optimization in SnTe by Mn-alloying via a zone-melting method. J Mater Chem A. 2015;3(39):19974.

    CAS  Google Scholar 

  81. Acharya S, Anwar S, Mori T, Soni A. Coupling of charge carriers with magnetic entropy for power factor enhancement in Mn doped Sn1.03Te for thermoelectric applications. J Mater Chem C. 2018;6(24):6489.

    CAS  Google Scholar 

  82. Ahmed F, Tsujii N, Mori T. Thermoelectric properties of CuGa1-xMnxTe2: power factor enhancement by incorporation of magnetic ions. J Mater Chem A. 2017;5(16):6489.

    Google Scholar 

  83. Vaney JB, Yamini SA, Takaki H, Kobayashi K, Kobayashi N, Mori T. Magnetism-mediated thermoelectric performance of the Cr-doped bismuth telluride tetradymite. Mater Today Phys. 2019;2019(9):100090.

    Google Scholar 

  84. Hicks LD, Dresselhaus MS. Effet of quantum-well structures on the thermoelectric figure of merit. Phys Rev B. 1993;47(19):12727.

    CAS  Google Scholar 

  85. Hicks LD, Dresselhaus MS. Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B. 1993;47(24):16631.

    CAS  Google Scholar 

  86. Hicks LD, Dresselhaus MS. Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. MRS Online Proc Libr. 1993;326:413.

    Google Scholar 

  87. Medlin DL, Snyder GJ. Interfaces in bulk thermoelectric materials: a review for current opinion in colloid and interface science. Curr Opin Colloid Interface Sci. 2009;14(4):226.

    CAS  Google Scholar 

  88. Yang RG, Chen G. Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys Rev B. 2004;69(19):195316.

    Google Scholar 

  89. Zhao W, Liu Z, Wei P, Zhang Q, Zhu W, Su X, Tang X, Yang J, Liu Y, Shi J. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nat Nanotechnol. 2017;12(1):55.

    CAS  Google Scholar 

  90. Lu R, Lopez J, Liu Y, Bailey T, Page A, Wang S, Uher C, Poudeu P. Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high-Tc ferromagnetism and enhanced thermoelectric performance. J Mater Chem A. 2019;7(18):11095.

    CAS  Google Scholar 

  91. Bean C, Livingston UD. Superparamagnetism. J Appl Phys. 1959;30(4):S120.

    Google Scholar 

  92. Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S, He DJN. Superparamagnetic enhancement of thermoelectric performance. Nature. 2017;549(7671):247.

    CAS  Google Scholar 

  93. Funatogawa Z. On the magneto-thermoelectric power of iron crystal at high temperature. J Phys Soc Jpn. 1951;6(4):256.

    Google Scholar 

  94. Gondo Y, Funatogawa Z. On the magneto-thermoelectric power of iron crystal at low temperatures. J Phys Soc Jpn. 1952;7(6):589.

    Google Scholar 

  95. Wolfe R, Smith GE. Effects of a magnetic field on the thermoelectric properties of a bismuth-antimony alloy. Appl Phys Lett. 1962;1(1):5.

    CAS  Google Scholar 

  96. Armitage D, Goldsmid H. Magneto-Seebeck and Nernst effects in cadmium arsenide. J Phys C: Solid State Phys. 1969;2(12):2389.

    CAS  Google Scholar 

  97. Yim WM, Amith A. Bi-Sb alloys for magneto-thermoelelctric and thermomagnetic cooling. Solid-State Electron. 1972;15(10):1141.

    CAS  Google Scholar 

  98. van Cong H, Mesnard G. Weak magnetic field dependence of the thermoelectric effect in heavily doped semiconductors at low temperatures. Phys Status Solidi B. 1972;51(1):251.

    Google Scholar 

  99. Hansen OP, Nielsen H. Magneto-thermoelectric power of bismuth in weak magnetic fields. Phys Status Solidi B. 1974;66(2):507.

    CAS  Google Scholar 

  100. Butler WH, Williams RK. Electron-phonon interaction and lattice thermal conductivity. Phys Rev B. 1978;18(12):6483.

    CAS  Google Scholar 

  101. Liu H, Fang L, Wu F, Tian DX, Li WJ, Lu Y, Kong CY, Zhang SF. Thermoelectric and magneto-thermoelectric properties of Ga-doped ZnO thin films by RF magnetron sputtering. Surf Rev Lett. 2014;21(3):1450033.

    Google Scholar 

  102. Mitdank R, Handwerg M, Steinweg C, Töllner W, Daub M, Nielsch K, Fischer SF. Enhanced magneto-thermoelectric power factor of a 70 nm Ni-nanowire. J Appl Phys. 2012;111(10):104320.

    Google Scholar 

  103. Nikolaeva AA, Konopko LA, Huber TE, Bodiul PP, Popov IA. Prospects of nanostructures Bi1−xSbx for thermoelectricity. J Solid State Chem. 2012;193:71.

    CAS  Google Scholar 

  104. Böhnert T, Vega V, Michel AK, Prida VM, Nielsch K. Magneto-thermopower andmagnetoresistance of single Co-Ni alloynanowires. Appl Phys Lett. 2013;103(9):092407.

    Google Scholar 

  105. Xiao D, Yao Y, Fang Z, Niu Q. Berry-phase effect in anomalous thermoelectric transport. Phys Rev Lett. 2006;97(2):026603.

    Google Scholar 

  106. Checkelsky JG, Ong NP. Thermopower and Nernst effect in graphene in a magnetic field. Phys Rev B. 2009;80(8):081413.

    Google Scholar 

  107. Zuev YM, Chang W, Kim P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys Rev Lett. 2009;102(9):096807.

    Google Scholar 

  108. Fauqué B, Butch NP, Syers P, Paglione J, Wiedmann S, Collaudin A, Grena B, Zeitler U, Behnia K. Magnetothermoelectric properties of Bi2Se3. Phys Rev B. 2013;87(3):035133.

    Google Scholar 

  109. Liang T, Gibson Q, Xiong J, Hirschberger M, Koduvayur SP, Cava RJ, Ong NP. Evidence for massive bulk Dirac fermions in Pb1-xSnxSe from Nernst and thermopower experiments. Nat Commun. 2013;4(1):1.

    Google Scholar 

  110. Potter AC, Serbyn M, Vishwanath A. Thermoelectric transport signatures of dirac composite fermions in the half-filled landau level. Phys Rev X. 2016;6(3):031026.

    Google Scholar 

  111. Liang T, Gibson Q, Xiong J, Hirschberger M, Koduvayur SP, Cava RJ, Ong NP. Evidence for massive bulk Dirac fermions in Pb1-xSnxSe from Nernst and thermopower experiments. Nat Commun. 2013;4:1.

    Google Scholar 

  112. Lundgren R, Laurell P, Fiete GA. Thermoelectric properties of Weyl and Dirac semimetals. Phys Rev B. 2014;90(16):165115.

    Google Scholar 

  113. Sharma G, Goswami P, Tewari S. Nernst and magnetothermal conductivity in a lattice model of Weyl fermions. Phys Rev B. 2016;93(3):035116.

    Google Scholar 

  114. Wang H, Luo X, Peng K, Sun Z, Shi M, Ma D, Wang N, Wu T, Ying J, Wang Z. Magnetic field-enhanced thermoelectric performance in dirac semimetal Cd3As2 crystals with different carrier concentrations. Adv Funct Mater. 2019;29(37):1902437.

    Google Scholar 

  115. Wang HH, Luo XG, Chen WW, Wang NZ, Lei B, Meng FB, Shang C, Ma LK, Wu T, Dai X, Wang ZF, Chen XH. Magnetic-field enhanced high-thermoelectric performance in topological Dirac semimetal Cd3As2 crystal. Sci Bull. 2018;63(7):411.

    CAS  Google Scholar 

  116. Skinner B, Fu L. Large, nonsaturating thermopower in a quantizing magnetic field. Sci Adv. 2018;4(5):eaat2621.

    Google Scholar 

  117. Kozii V, Skinner B, Fu L. Thermoelectric hall conductivity and figure of merit in Dirac/Weyl materials. Phys Rev B. 2019;99(15):155123.

    CAS  Google Scholar 

  118. Zhang W, Wang P, Skinner B, Bi R, Kozii V, Cho CW, Zhong R, Schneeloch J, Yu D, Gu G. Observation of a thermoelectric hall plateau in the extreme quantum limit. Nat Commun. 2019;11(1):1.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 50835002 and 51105102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, CC., Xiao, C. When thermoelectric materials come across with magnetism. Rare Met. 40, 752–766 (2021). https://doi.org/10.1007/s12598-020-01652-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01652-6

Keywords

Navigation