当前位置: X-MOL 学术Russ. J. Math. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boundary Problems for Three-Dimensional Dirac Operators and Generalized MIT Bag Models for Unbounded Domains
Russian Journal of Mathematical Physics ( IF 1.7 ) Pub Date : 2020-12-22 , DOI: 10.1134/s106192082004010x
V. S. Rabinovich

Abstract

We consider the operators of the following boundary problems

$$\mathbb{D}_{\boldsymbol{A,}\Phi,\mathfrak{B}}\boldsymbol{u}=\left\{ \begin{array} [c]{c} \mathfrak{D}_{\boldsymbol{A},\Phi}\boldsymbol{u}\text{ on }\Omega\\ \mathfrak{B}\boldsymbol{u}_{\partial\Omega}\text{ on }\partial\Omega \end{array} \right. $$(1)

in unbounded domains \(\Omega\subset\mathbb{R}^{3}\), where \(\mathfrak{D} _{\boldsymbol{A},\Phi}\) is the \(3-D\) Dirac operator

$$\mathfrak{D}_{\boldsymbol{A},\Phi}=\left[ \boldsymbol{\alpha\cdot }(i\boldsymbol{\nabla}+\boldsymbol{A})+\alpha_{0}m+\Phi I_{4}\right]=\sum_{j=1}^{3}\alpha_{j}(i\partial_{x_{j}}+A_{j})\alpha_{0}m+\Phi I_{4}$$

defined on the distributions \(\boldsymbol{u}=(u_{1},u_{2},u_{3},u_{4})\in H^{1}(\Omega,\mathbb{C}^{4})\), where \(\alpha_{0},\alpha_{1},\alpha_{2} ,\alpha_{3}\) are Dirac matrices, \(\boldsymbol{A}\in L^{\infty} (\Omega,\mathbb{R}^{3})\) and \(\Phi\in L^{\infty}(\mathbb{R}^{3})\) are the magnetic and electrostatic potentials, \(m\in\mathbb{R}\) is the mass of a particle. Let \(\mathbb{C}^{4}\ni\boldsymbol{u}=(\boldsymbol{u}^{1} ,\boldsymbol{u}^{2})\in\mathbb{C}^{2}\oplus\mathbb{C}^{2}.\) We assume that the operator \(\mathfrak{B}\) of the boundary condition is

$$\mathfrak{B}\boldsymbol{u}_{\partial\Omega}=\mathfrak{b}_{1}\boldsymbol{u} _{\partial\Omega}^{1}+\mathfrak{b}_{2}\boldsymbol{u}_{\partial\Omega}^{2}, $$(2)

where \(\mathfrak{b}_{j},j=1,2\), are \(2\times2\) matrices, \(\boldsymbol{u} _{\partial\Omega}^{j}\in H^{1/2}(\partial\Omega,\mathbb{C}^{2}),j=1,2\), are restrictions of distributions \(\boldsymbol{u}^{j}\in H^{1}(\Omega ,\mathbb{C}^{2})\) on \(\partial\Omega.\) The class of the boundary condition (2) in a particular case contains the boundary conditions of the MIT bag model and its generalizations which describe the confinement of the quarks to the domain \(\Omega.\)

We give conditions of self-adjointness of unbounded operators \(\mathscr{D} _{\boldsymbol{A,}\Phi,\mathfrak{B}}\) associated with the boundary problem (1) and give a description of the essential spectrum of \(\mathscr{D} _{\boldsymbol{A,}\Phi,\mathfrak{B}}\) for certain unbounded domains by applying the limit operators method.



中文翻译:

三维Dirac算子的边界问题和无界域的广义MIT袋模型

摘要

我们考虑以下边界问题的算子

$$ \ mathbb {D} _ {\ boldsymbol {A,} \ Phi,\ mathfrak {B}} \ boldsymbol {u} = \ left \ {\ begin {array} [c] {c} \ mathfrak {D} _ {\ boldsymbol {A},\ Phi} \ boldsymbol {u} \ text {on} \ Omega \\ \ mathfrak {B} \ boldsymbol {u} _ {\ partial \ Omega} \ text {on} \ partial \欧米茄\ end {array} \ right。$$(1)

在无界域\(\ Omega \ subset \ mathbb {R} ^ {3} \)中,其中\(\ mathfrak {D} _ {\ boldsymbol {A},\ Phi} \)\(3-D \ ) Dirac运算符

$$ \ mathfrak {D} _ {\ boldsymbol {A},\ Phi} = \ left [\ boldsymbol {\ alpha \ cdot}(i \ boldsymbol {\ nabla} + \ boldsymbol {A})+ \ alpha_ {0 } m + \ Phi I_ {4} \ right] = \ sum_ {j = 1} ^ {3} \ alpha_ {j}(i \ partial_ {x_ {j}} + A_ {j})\ alpha_ {0} m + \ Phi I_ {4} $$

定义在分布\(\ boldsymbol {u} = {u_ {1},u_ {2},u_ {3},u_ {4})\中H ^ {1}(\ Omega,\ mathbb {C} ^ {4})\),其中\(\ alpha_ {0},\ alpha_ {1},\ alpha_ {2},\ alpha_ {3} \)是Dirac矩阵,\(\ boldsymbol {A} \ in L ^ {\ infty}(\ Omega,\ mathbb {R} ^ {3})\)\(\ Phi \ in L ^ {\ infty}(\ mathbb {R} ^ {3})\)具有磁性,静电势\(m \ in \ mathbb {R} \)是粒子的质量。让\(\ mathbb {C} ^ {4} \ ni \ boldsymbol {u} =(\\ boldsymbol {u} ^ {1},\ boldsymbol {u} ^ {2})\ in \ mathbb {C} ^ { 2} \ oplus \ mathbb {C} ^ {2}。\)我们假设边界条件的运算符\(\ mathfrak {B} \)

$$ \ mathfrak {B} \ boldsymbol {u} _ {\ partial \ Omega} = \ mathfrak {b} _ {1} \ boldsymbol {u} _ {\ partial \ Omega} ^ {1} + \ mathfrak {b } _ {2} \ boldsymbol {u} _ {\ partial \ Omega} ^ {2},$$(2)

其中\(\ mathfrak {b} _ {j},j = 1,2 \)\(2 \ times2 \)矩阵,\(\ boldsymbol {u} _ {\ partial \ Omega} ^ {j} \在H ^ {1/2}(\ partial \ Omega,\ mathbb {C} ^ {2}),j = 1,2 \)中,是分布的限制\(\ boldsymbol {u} ^ {j} \ in \(\ partial \ Omega。\)上H ^ {1}(\ Omega,\ mathbb {C} ^ {2})\)在特定情况下,边界条件(2)的类别包含边界条件的边界条件。 MIT袋模型及其泛化描述了夸克在域\(\ Omega。\)中的限制

我们给出与边界问题(1)关联的无界算子\(\ mathscr {D} _ {\ boldsymbol {A,} \ Phi,\ mathfrak {B}} \}的自伴随条件,并给出关于通过应用极限算子方法,对某些无界域,\(\ mathscr {D} _ {\ boldsymbol {A,} \ Phi,\ mathfrak {B}} \}的基本谱。

更新日期:2020-12-23
down
wechat
bug