Skip to main content
Log in

Boundary Problems for Three-Dimensional Dirac Operators and Generalized MIT Bag Models for Unbounded Domains

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the operators of the following boundary problems

$$\mathbb{D}_{\boldsymbol{A,}\Phi,\mathfrak{B}}\boldsymbol{u}=\left\{ \begin{array} [c]{c} \mathfrak{D}_{\boldsymbol{A},\Phi}\boldsymbol{u}\text{ on }\Omega\\ \mathfrak{B}\boldsymbol{u}_{\partial\Omega}\text{ on }\partial\Omega \end{array} \right. $$
(1)

in unbounded domains \(\Omega\subset\mathbb{R}^{3}\), where \(\mathfrak{D} _{\boldsymbol{A},\Phi}\) is the \(3-D\) Dirac operator

$$\mathfrak{D}_{\boldsymbol{A},\Phi}=\left[ \boldsymbol{\alpha\cdot }(i\boldsymbol{\nabla}+\boldsymbol{A})+\alpha_{0}m+\Phi I_{4}\right]=\sum_{j=1}^{3}\alpha_{j}(i\partial_{x_{j}}+A_{j})\alpha_{0}m+\Phi I_{4}$$

defined on the distributions \(\boldsymbol{u}=(u_{1},u_{2},u_{3},u_{4})\in H^{1}(\Omega,\mathbb{C}^{4})\), where \(\alpha_{0},\alpha_{1},\alpha_{2} ,\alpha_{3}\) are Dirac matrices, \(\boldsymbol{A}\in L^{\infty} (\Omega,\mathbb{R}^{3})\) and \(\Phi\in L^{\infty}(\mathbb{R}^{3})\) are the magnetic and electrostatic potentials, \(m\in\mathbb{R}\) is the mass of a particle. Let \(\mathbb{C}^{4}\ni\boldsymbol{u}=(\boldsymbol{u}^{1} ,\boldsymbol{u}^{2})\in\mathbb{C}^{2}\oplus\mathbb{C}^{2}.\) We assume that the operator \(\mathfrak{B}\) of the boundary condition is

$$\mathfrak{B}\boldsymbol{u}_{\partial\Omega}=\mathfrak{b}_{1}\boldsymbol{u} _{\partial\Omega}^{1}+\mathfrak{b}_{2}\boldsymbol{u}_{\partial\Omega}^{2}, $$
(2)

where \(\mathfrak{b}_{j},j=1,2\), are \(2\times2\) matrices, \(\boldsymbol{u} _{\partial\Omega}^{j}\in H^{1/2}(\partial\Omega,\mathbb{C}^{2}),j=1,2\), are restrictions of distributions \(\boldsymbol{u}^{j}\in H^{1}(\Omega ,\mathbb{C}^{2})\) on \(\partial\Omega.\) The class of the boundary condition (2) in a particular case contains the boundary conditions of the MIT bag model and its generalizations which describe the confinement of the quarks to the domain \(\Omega.\)

We give conditions of self-adjointness of unbounded operators \(\mathscr{D} _{\boldsymbol{A,}\Phi,\mathfrak{B}}\) associated with the boundary problem (1) and give a description of the essential spectrum of \(\mathscr{D} _{\boldsymbol{A,}\Phi,\mathfrak{B}}\) for certain unbounded domains by applying the limit operators method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Agranovich and M. I. Vishik, “Elliptic Problems with a Parameter and Parabolic Problems of General Type,” Russ. Math. Surv., 19, 53–157 (1964).

    Article  MathSciNet  Google Scholar 

  2. M. S. Agranovich, “Elliptic Boundary Prioblems,” In the book “Partial Differential Equations,” IX, M.S. Agranovich, Yu.V. Egorov, M.S. Shubin (editors), Springer, Berlin-Heidelberg-New York (2010).

    Google Scholar 

  3. H. Amann, “Uniformly Regular and Singular Riemannian Manifolds in Elliptic and Parabolic Equations,” Springer Proc. Math. Stat., 119, Springer, Cham 1–43 (2015).

    MATH  Google Scholar 

  4. N. Arrizabalaga, L. Le Treust, and N. Raymond, “On the MIT Bag Model in the Non- relativistic Limit,” Comm. Math. Phys., 354, 641-669 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  5. N. Arrizabalaga, L. Le Treust, A. Mas, and N. Raymond, “The MIT Bag Model as an Infinite Mass Limit,” J. de l’École polytechnique — Mathématiques, 6, 329–365 (2019).

    Article  MathSciNet  Google Scholar 

  6. N. Arrizabalaga, A. Mas, and L. Vega, “Shell Interactions for Dirac Operators,” J. Math. Pures Appl., 102, 617–639 (2014).

    Article  MathSciNet  Google Scholar 

  7. N. Arrizabalaga, A. Mas, and L. Vega, “Shell Interactions for Dirac Operators: on the Point Spectrum and the Confinement,” SIAM J. Math. Anal., 47, 1044–1069 (2015).

    Article  MathSciNet  Google Scholar 

  8. R. D. Benguria, S. Fournais, E. Stockmeyer, and H. Van Den Bosch, “Selfadjointness of Two-Dimensional Dirac Operators on Domains,” Ann. Henri Poincaré, 18, 1371–1383 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  9. R. D. Benguria, S. Fournais, E. Stockmeyer, and H. Van Den Bosch, “Spectral Gaps of Dirac Operators Describing Graphene Quantum Dots,” Math. Phys. Anal. Geom., 20, (2017).

    Article  MathSciNet  Google Scholar 

  10. J. Behrndt, M. Holzmann, and A. Mas, “Self-Adjoint Dirac Operators on Domains in \(\mathbb{R}^{3}\),” Ann. Henri Poincaré Online First 2020 The Author(s) https://doi.org/10.1007/s00023-020-00925-1 (2017), to appear.

  11. C. Bör and W. Ballmann, “Boundary Value Problems for Elliptic Differential Operators of First Order.,” In Surveys in Differential Geometry, 17, Boston, MA 1–78 (2012).

    Article  MathSciNet  Google Scholar 

  12. C. Bör and W. Ballmann,, “Guide to Elliptic Boundary Value Problems for Dirac-Type Operators,” Springer International Publishing, Cham 43–80 (2016).

  13. M. Sh. Birman and M. Solomjak, Spectral Theory of Selfadjoint Operators in Hilbert Spaces, Reidel, Dordrecht (1987).

    Book  Google Scholar 

  14. B. Booß -Bavnbek, M. Lesch, and C. Zhu, “The Calderón Projection: New Definition and Applications,” J. Geom. Phys., 59, 784–826 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  15. B. Booß -Bavnbek and K. Wojciechowski, Elliptic Boundary Problems for Dirac Operators, Springer Science+Business Media, LLC, (1993).

    Book  Google Scholar 

  16. A. Chodos, “Field-Theoretic Lagrangian with Baglike Solutions,” Phys. Rev. D, 12, 2397–2406 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, “New Extended Model of Hadrons,” Phys. Rev. D, 9, 3471–3495 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  18. K. T. Hecht, Quantum Mechanics, Springer Science+Business Media, LLC (2000).

    Book  Google Scholar 

  19. P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, Second ed., CRC Press, Boca Raton London New York, Washington, D.C. FL, (1994).

    Google Scholar 

  20. N. Grosse and V. Nistor, “Uniform Shapiro-Lopatinski Conditions and Boundary Value Problems on Manifolds with Bounded Geometry,” Potential Anal., 53, 407–447 (2020).

    Article  MathSciNet  Google Scholar 

  21. K. Johnson, “The MIT Bag Model,” Acta Phys. Polon., 6, 865–892 (1975).

    Google Scholar 

  22. J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, Berlin (1972).

    Book  Google Scholar 

  23. T. Ourmiéres-Bonafos and L. Vega, “A Strategy for Self-Adjointness of Dirac Operators: Applications to the MIT Bag Model and \(\delta\)-Shell Interactions,” Publ. Mat., 62, 397–437 (2018).

    Article  MathSciNet  Google Scholar 

  24. T. Ourmieres-Bonafos and F. Pizzichillo, “Dirac Operators and Shell Interactions: a Survey,” Preprint arXiv:1902.03901, (2019).

    ADS  Google Scholar 

  25. V. Rabinovich, “Essential Spectrum of Schrödinger Operators with \(\delta\) and \(\delta^{\prime}\) -Interactions on Systems of Unbounded Smooth Hypersurfaces in \(\mathbb{R}^{n}\) in Contemporary Mathematics,” Differential Equations, 734, Mathematical Physics and Applications, S.G. Krein Centennial, Editors P.Kuchment, E.Semenov, (2019).

    Google Scholar 

  26. V. Rabinovich, “Schrödinger Operators with Interactions on Unbounded Hypersurfaces,” Math. Meth. Appl. Sci., 42, 4981–4998 (2019).

    Article  Google Scholar 

  27. V. Rabinovich, “Essential Spectrum of Schrödinger Operators with \(\delta-\)Interactions on Unbounded Hypersurfaces,” Math. Notes, 102, 698–709 (2017).

    Article  MathSciNet  Google Scholar 

  28. V. Rabibovich, S. Roch, and B. Silbermann, Limit Operators and Their Applications in Operator Theory, Birkhäuser Verlag, Basel, Boston, Berlin (2004).

    Book  Google Scholar 

  29. V. Rabinovich, “Boundary Problems for Domains with Conical Exits at Infinity and Limit Operators,” Complex Var. Elliptic Equations, 60, 293–309 (2015).

    Article  MathSciNet  Google Scholar 

  30. V. Rabinovich, “Essential Spectrum of Perturbed Pseudodifferential Operators. Applications to the Schrödinger, Klein-Gordon, and Dirac Operators,” Russ. J. Math. Physics, 12, 62–80 (2005).

    MathSciNet  MATH  Google Scholar 

  31. E. Stockmeyer and S. Vugalter, “Infinite Mass Boundary Conditions for Dirac Operators,” J. Spectral Theory, 9, 569–600 (2019).

    Article  MathSciNet  Google Scholar 

  32. B. Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin (1992).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Mexican National System of Investigators (SNI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Rabinovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabinovich, V.S. Boundary Problems for Three-Dimensional Dirac Operators and Generalized MIT Bag Models for Unbounded Domains. Russ. J. Math. Phys. 27, 500–516 (2020). https://doi.org/10.1134/S106192082004010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106192082004010X

Navigation