当前位置: X-MOL 学术Biol. Fertil. Soils › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impacts of application of calcium cyanamide and the consequent increase in soil pH on N2O emissions and soil bacterial community compositions
Biology and Fertility of Soils ( IF 5.1 ) Pub Date : 2020-11-20 , DOI: 10.1007/s00374-020-01523-3
Kazuki Suzuki , Naoya Kashiwa , Kota Nomura , Rasit Asiloglu , Naoki Harada

Calcium cyanamide, a component of lime-N, is gradually hydrolyzed into urea in soil and generates dicyandiamide, a nitrification inhibitor. Calcium cyanamide also increases soil pH. In this study, we determined the effects of calcium cyanamide application and the consequent increase in soil pH on N 2 O emissions and soil bacterial community composition. Five fertilizers (i.e., urea (U), cyanamide (CN), calcium cyanamide (CaCN), calcium hydroxide (Ca), and urea plus calcium hydroxide (CaU)) were applied using two methods (i.e., whole mixing and local placement in the mid layer) in a soil microcosm experiment. The control (CT) was left unfertilized. Compared with the U treatment, the CN, CaCN, and CaU treatments significantly suppressed N 2 O emissions. Fertilizer placement had less of an effect on N 2 O emissions. On day 7 after fertilizer application, soil bacterial alpha diversity indices were reduced in the CaCN, CN, and CaU treatments, and Planococcaceae was the dominant bacterial family. Compared with the bacterial communities in the other treatments, those in the CaCN, CN, and CaU treatments were predicted to contain fewer nitrification and denitrification genes. The soil bacterial community composition gradually shifted from that in CT as the soil pH increased. Our results suggest that, apart from the nitrification inhibitor effect of cyanamide, shaping the bacterial community compositions by the increase in soil pH under high urea concentrations could play an essential role in suppressing N 2 O emissions from soil.

中文翻译:

氰氨化钙的施用和随之而来的土壤 pH 值增加对 N2O 排放和土壤细菌群落组成的影响

石灰氮的一种成分氰氨化钙在土壤中逐渐水解成尿素,生成双氰胺,一种硝化抑制剂。氰氨化钙还会增加土壤的 pH 值。在这项研究中,我们确定了氰氨化钙的施用和随之而来的土壤 pH 值增加对 N 2 O 排放和土壤细菌群落组成的影响。五种肥料(即尿素 (U)、氰胺 (CN)、氰氨化钙 (CaCN)、氢氧化钙 (Ca) 和尿素加氢氧化钙 (CaU))使用两种方法(即整体混合和局部放置在中间层)在土壤微观实验中。对照 (CT) 未受精。与U处理相比,CN、CaCN和CaU处理显着抑制了N 2 O排放。施肥对N 2 O 排放的影响较小。施肥后第 7 天,CaCN、CN 和 CaU 处理的土壤细菌 α 多样性指数降低,并且 Planococcaceae 是优势细菌家族。与其他处理中的细菌群落相比,预测 CaCN、CN 和 CaU 处理中的细菌群落含有较少的硝化和反硝化基因。随着土壤pH值的增加,土壤细菌群落组成逐渐从CT中转变。我们的研究结果表明,除了氰胺的硝化抑制剂作用外,在高尿素浓度下通过增加土壤 pH 值来塑造细菌群落组成,可以在抑制土壤 N 2 O 排放方面发挥重要作用。蓝球菌科是优势菌科。与其他处理中的细菌群落相比,预测 CaCN、CN 和 CaU 处理中的细菌群落含有较少的硝化和反硝化基因。随着土壤pH值的增加,土壤细菌群落组成逐渐从CT中转变。我们的研究结果表明,除了氰胺的硝化抑制剂作用外,在高尿素浓度下通过增加土壤 pH 值来塑造细菌群落组成,可以在抑制土壤中的 N 2 O 排放方面发挥重要作用。蓝球菌科是优势菌科。与其他处理中的细菌群落相比,预测 CaCN、CN 和 CaU 处理中的细菌群落含有较少的硝化和反硝化基因。随着土壤pH值的增加,土壤细菌群落组成逐渐从CT中转变。我们的研究结果表明,除了氰胺的硝化抑制剂作用外,在高尿素浓度下通过增加土壤 pH 值来塑造细菌群落组成,可以在抑制土壤 N 2 O 排放方面发挥重要作用。随着土壤pH值的增加,土壤细菌群落组成逐渐从CT中转变。我们的研究结果表明,除了氰胺的硝化抑制剂作用外,在高尿素浓度下通过增加土壤 pH 值来塑造细菌群落组成,可以在抑制土壤中的 N 2 O 排放方面发挥重要作用。随着土壤pH值的增加,土壤细菌群落组成逐渐从CT中转变。我们的研究结果表明,除了氰胺的硝化抑制作用外,在高尿素浓度下通过增加土壤 pH 值来塑造细菌群落组成,可以在抑制土壤中的 N 2 O 排放方面发挥重要作用。
更新日期:2020-11-20
down
wechat
bug